55,845 research outputs found

    Sensor fault detection with low computational cost : a proposed neural network-based control scheme

    Get PDF
    The paper describes a low computational power method for detecting sensor faults. A typical fault detection unit for multiple sensor fault detection with modelbased approaches, requires a bank of estimators. The estimators can be either observer or artificial intelligence based. The proposed control scheme uses an artificial intelligence approach for the development of the fault detection unit abbreviated as ‘i-FD’. In contrast with the bank-estimators approach the proposed i-FD unit is using only one estimator for multiple sensor fault detection. The efficacy of the scheme is tested on an Electro-Magnetic Suspension (EMS) system and compared with a bank of Kalman estimators in simulation environment

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    Case study: Bio-inspired self-adaptive strategy for spike-based PID controller

    Get PDF
    A key requirement for modern large scale neuromorphic systems is the ability to detect and diagnose faults and to explore self-correction strategies. In particular, to perform this under area-constraints which meet scalability requirements of large neuromorphic systems. A bio-inspired online fault detection and self-correction mechanism for neuro-inspired PID controllers is presented in this paper. This strategy employs a fault detection unit for online testing of the PID controller; uses a fault detection manager to perform the detection procedure across multiple controllers, and a controller selection mechanism to select an available fault-free controller to provide a corrective step in restoring system functionality. The novelty of the proposed work is that the fault detection method, using synapse models with excitatory and inhibitory responses, is applied to a robotic spike-based PID controller. The results are presented for robotic motor controllers and show that the proposed bioinspired self-detection and self-correction strategy can detect faults and re-allocate resources to restore the controller’s functionality. In particular, the case study demonstrates the compactness (~1.4% area overhead) of the fault detection mechanism for large scale robotic controllers.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    On two variations of identifying codes

    Full text link
    Identifying codes have been introduced in 1998 to model fault-detection in multiprocessor systems. In this paper, we introduce two variations of identifying codes: weak codes and light codes. They correspond to fault-detection by successive rounds. We give exact bounds for those two definitions for the family of cycles

    Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems

    Get PDF
    This paper considers zonotopic fault detection observer design in the finite-frequency domain for discrete-time Takagi–Sugeno fuzzy systems with unknown but bounded disturbances and measurement noise. We present a novel fault detection observer structure, which is more general than the commonly used Luenberger form. To make the generated residual sensitive to faults and robust against disturbances, we develop a finite-frequency fault detection observer based on generalised Kalman–Yakubovich–Popov lemma and P-radius criterion. The design conditions are expressed in terms of linear matrix inequalities. The major merit of the proposed method is that residual evaluation can be easily implemented via zonotopic approach. Numerical examples are conducted to demonstrate the proposed methodPeer ReviewedPostprint (author's final draft

    The Soviet Viewpoint on Nuclear Weapons in International Law

    Get PDF
    A flexible, model based fault detection and isolation (FDI) system for an arbitrary configuration of a water tank world has been designed and implemented in MATLAB, SIMULINK and dSPACE. The fault detection is performed with local change detection algorithms, and the fault isolation is performed with residual patterns automatically generated from the total configuration

    Robust fault detection for networked systems with communication delay and data missing

    Get PDF
    n this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays and the stochastic data missing phenomenon, which typically result from the limited capacity of the communication networks. The network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but resides in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter such that, for all unknown inputs, possible parameter uncertainties and incomplete measurements, the error between the residual signal and the fault signal is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique

    On design of quantized fault detection filters with randomly occurring nonlinearities and mixed time-delays

    Get PDF
    This paper is concerned with the fault detection problem for a class of discrete-time systems with randomly occurring nonlinearities, mixed stochastic time-delays as well as measurement quantizations. The nonlinearities are assumed to occur in a random way. The mixed time-delays comprise both the multiple discrete time-delays and the infinite distributed delays that occur in a random way as well. A sequence of stochastic variables is introduced to govern the random occurrences of the nonlinearities, discrete time-delays and distributed time-delays, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fault detection filter such that, in the presence of measurement quantization, the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fault detection filters, and then the explicit expression of the desired filter gains is derived by means of the feasibility of certain matrix inequalities. Also, the optimal performance index for the addressed fault detection problem can be obtained by solving an auxiliary convex optimization problem. A practical example is provided to show the usefulness and effectiveness of the proposed design method

    Fault Detection and Classification in Transmission Line Using Wavelet Transform and ANN

    Full text link
    Recent years, there is an increased interest in fault classification algorithms. The reason, behind this interest is the escalating power demand and multiple interconnections of utilities in grid. This paper presents an application of wavelet transforms to detect the faults and further to perform classification by supervised learning paradigm. Different architectures of ANN aretested with the statistical attributes of a wavelet transform of a voltage signal as input features and binary digits as outputs. The proposed supervised learning module is tested on a transmission network. It is observed that ANN architecture performs satisfactorily when it is compared with the simulation results. The transmission network is simulated on Matlab. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Sum Square Error (SSE) are used to determine the efficacy of the neural network