983 research outputs found

    Elevated Temperature Crack Propagation

    Get PDF
    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions

    Short crack initiation and growth at 600 °C in notched specimens of Inconel718

    No full text
    The natural initiation and growth of short cracks in Inconel®718 U-notch specimens has been studied at 600 °C in air. U notches were introduced through broaching, and hardness traces and optical microscopy on cross-sections through the U notch broaching showed that the broaching process had introduced a deformed, work hardened layer. Fatigue tests were conducted under load control using a 1-1-1-1 trapezoidal waveform, on specimens with as-broached and polished U-notches. Multi-site crack initiation occurred in the notch root. Many of the cracks initiated at bulge-like features formed by volume expansion of oxidising (Nb,Ti)C particles. In unstressed samples, oxidation of (Nb,Ti)C particles occurred readily, producing characteristic surface eruptions. Scanning electron microscopy on metallographic sections revealed some sub-surface (Nb,Ti)C oxidation and localised matrix deformation around oxidised particles. A mechanism for crack initiation by carbide expansion during oxidation is discussed. Surface short crack growth rates in the notch root of polished specimens were measured using an acetate replica technique. Observed short-crack growth rates were approximately constant across a wide range of crack lengths. However, there was a transition to rapid, accelerating crack growth once cracks reached several hundred micrometers in length. This rapid propagation in the latter stages of the fatigue life was assisted by crack coalescence. Polishing the U-notch to remove broaching marks resulted in a pronounced increase in fatigue life

    Relation between crack growth behaviour and crack front morphology under hold-time conditions in DA Inconel 718

    Get PDF
    The crack growth behaviour of Direct Aged Inconel 718 was studied at 550 °C. Experiments were carried out under pure fatigue cycles, hold-time cycles of different durations and a mix of both. Hold-time cycles were systematically associated with complex crack front morphologies. A new numerical approach was developed to assess the effect of crack front morphology on the direct current potential drop technique, mechanical fields at the crack tip and ultimately, measured crack growth rates. Using this approach, a clear relation was established between crack front morphology and its evolution, and the crack growth behaviour under hold-time conditions. Complex crack front morphologies are demonstrated to be responsible for increased crack growth rates. From this, a crack growth mechanism under hold-time conditions is proposed. Finally, the numerical framework here presented is to be considered as a new, easily reproducible, way to properly analyse experimental data when dealing with complex loading cycles and complex crack front morphologies

    Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    Full text link
    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity- factor (K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1 3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor (K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 C to 800 C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time dependent FCP rates of INCONEL 617 and HAYNES 230
    • …
    corecore