655 research outputs found

    BRT: Bus-based Routing Technique in Urban Vehicular Networks

    Get PDF
    International audienceRouting data in Vehicular Ad hoc Networks is still a challenging topic. The unpredictable mobility of nodes renders routing of data packets over optimal paths not always possible. Therefore, there is a need to enhance the routing service. Bus Rapid Transit systems, consisting of buses characterized by a regular mobility pattern, can be a good candidate for building a backbone to tackle the problem of uncontrolled mobility of nodes and to select appropriate routing paths for data delivery. For this purpose, we propose a new routing scheme called Bus-based Routing Technique (BRT) which exploits the periodic and predictable movement of buses to learn the required time (the temporal distance) for each data transmission to RoadSide Units (RSUs) through a dedicated bus-based backbone. Indeed, BRT comprises two phases: (i) Learning process which should be carried out, basically, one time to allow buses to build routing tables entries and expect the delay for routing data packets over buses, (ii) Data delivery process which exploits the pre-learned temporal distances to route data packets through the bus backbone towards an RSU (backbone mode). BRT uses other types of vehicles to boost the routing of data packets and also provides a maintenance procedure to deal with unexpected situations like a missing nexthop bus, which allows BRT to continue routing data packets. Simulation results show that BRT provides good performance results in terms of delivery ratio and end-to-end delay

    Improving quality of service through road side back-bone network in VANET

    Get PDF
    The vehicular ad hoc Networks (VANETs) are expected to support a large spectrum of traffic alert, dynamic route planning, file sharing, safety and infotainment applications to improve traffic management. User satisfaction plus in time delivery of real-time messages is the most significant quality evaluation criterion for vehicular applications. High mobility and rapidly changing topologies always lead to intermittent quality of services, higher delay and packet dropping issues in network. To improve the quality of services for multi-hop and dynamic environment, different types of solutions have been proposed. The article introduces multi-protocol label switching based on roadside backbone network to provide widespread, scalable, high-speed, robust quality of services and improve network efficiency. The simulation results showed that proposed model improves data transmission and routing performance in terms of data delivery, throughput, end-to-end delay and achieve adequate utilization of resources

    RESOURCE ALLOCATION AND EFFICIENT ROUTING IN WIRELESS NETWORKS

    Get PDF
    In wireless networks, devices (nodes) are connected by wireless links. An important issue is to set up high quality (high bandwidth) and efficient routing paths when one node wants to send packets to other nodes. Resource allocation is the foundation to guarantee high quality connections. In addition, it is critical to handle void areas in order to set up detour-free paths. Moreover, fast message broadcasting is essential in mobile wireless networks. Thus, my research includes dynamic channel allocation in wireless mesh networks, geographic routing in Ad Hoc networks, and message broadcasting in vehicular networks. The quality of connections in a wireless mesh network can be improved by equip- ping mesh nodes with multi-radios capable of tuning to non-overlapping channels. The essential problem is how to allocate channels to these multi-radio nodes. We develop a new bipartite-graph based channel allocation algorithm, which can improve bandwidth utilization and lower the possibility of starvation. Geographic routing in Ad Hoc networks is scalable and normally loop-free. However, traditional routing protocols often result in long detour paths when holes exist. We propose a routing protocol-Intermediate Target based Geographic Routing (ITGR) to solve this problem. The novelty is that a single forwarding path can be used to reduce the lengths of many future routing paths. We also develop a protocol called Hole Detection and Adaptive Geographic Routing, which identifies the holes efficiently by comparing the length of a routing path with the Euclidean distance between a pair of nodes. We then set up the shortest path based on it. Vehicles play an important role in our daily life. During inter-vehicle communication, it is essential that emergency information can be broadcast to surrounding vehicles quickly. We devise an approach that can find the best re-broadcasting node and propagate the message as fast as possible

    A distributed position-based protocol for emergency messages broadcasting in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can help reduce traffic accidents through broadcasting emergency messages among vehicles in advance. However, it is a great challenge to timely deliver the emergency messages to the right vehicles which are interested in them. Some protocols require to collect nearby real-time information before broadcasting a message, which may result in an increased delivery latency. In this paper, we proposed an improved position-based protocol to disseminate emergency messages among a large scale vehicle networks. Specifically, defined by the proposed protocol, messages are only broadcasted along their regions of interest, and a rebroadcast of a message depends on the information including in the message it has received. The simulation results demonstrate that the proposed protocol can reduce unnecessary rebroadcasts considerably, and the collisions of broadcast can be effectively mitigated

    An Congestion Control Based Cluster Approach for Effective Communication in VANET

    Get PDF
    Clustering in VANET is major controlling method used to make VANET worldwide topology less dynamic. Many of the VANET clustering methods are derived from mobile ad hoc networks (MANET). In any case, VANET hubs are portrayed by their high versatility, and the presence of VANET hubs in the same geographic area does not imply that they show a similar portability designs. Along these lines, VANET grouping plans should contemplate over the level of the speed distinction among neighboring hubs to create moderately stable clustering structure. In this paper, we present another bunching system reasonable for the VANET condition on thruways with the point of upgrading the steadiness of the system topology. This method takes the speed distinction as a parameter to make moderately stable group structure. In this paper proposed to built up another multi-metric calculation for cluster head decisions. A reproduction was directed to assess our strategy and contrast it and the most usually utilized grouping strategies
    corecore