15 research outputs found

    'Faster-than-Nyquist Signaling via Spatiotemporal Symbol-Level Precoding for Multi-User MISO Redundant Transmissions

    Get PDF
    This paper tackles the problem of both multi-user and intersymbol interference stemming from co-channel users transmitting at a faster-than-Nyquist (FTN) rate in multi-antenna downlink transmissions. We propose a framework for redundant block-based symbol-level precoders enabling the trade-off between constructive and destructive multi-user and interblock interference (IBI) effects at the single-antenna user terminals. Redundant elements are added as guard interval to handle IBI destructive effects. It is shown that, within this framework, accelerating the transmissions via FTN signaling improves the error-free spectral efficiency, up to a certain acceleration factor beyond which the transmitted information cannot be perfectly recovered by linear filtering followed by sampling. Simulation results corroborate that the proposed spatiotemporal symbol-level precoding can change the amount of added redundancy from zero (full IBI) to half (IBI-free) the equivalent channel order, so as to achieve a target balance between spectral and energy efficiencies

    Frequency-Packed Faster-Than-Nyquist Signaling via Symbol-Level Precoding for Multiuser MISO Redundant Transmissions

    Get PDF
    This work addresses the issue of interference generated by co-channel users in downlink multi-antenna multicarrier systems with frequency-packed faster-than-Nyquist (FTN) signaling. The resulting interference stems from an aggressive strategy for enhancing the throughput via frequency reuse across different users and the squeezing of signals in the time-frequency plane beyond the Nyquist limit. The spectral efficiency is proved to be increasing with the frequency packing and FTN acceleration factors. The lower bound for the FTN sampling period that guarantees information losslesness is derived as a function of the transmitting-filter roll-off factor, the frequency-packing factor, and the number of subcarriers. Space-time-frequency symbol-level precoders (SLPs) that trade off constructive and destructive interblock interference (IBI) at the single-antenna user terminals are proposed. Redundant elements are added as guard interval to cope with vestigial destructive IBI effects. The proposals can handle channels with delay spread longer than the multicarrier-symbol duration. The receiver architecture is simple, for it does not require digital multicarrier demodulation. Simulations indicate that the proposed SLP outperforms zero-forcing precoding and achieves a target balance between spectral and energy efficiencies by controlling the amount of added redundancy from zero (full IBI) to half (destructive IBI-free) the group delay of the equivalent channel

    Sequential spatio-temporal symbol-level precoding enabling faster-than-Nyquist signaling for multi-user MISO systems

    Get PDF
    This paper addresses the problem of the interference between multiple co-channel transmissions in the downlink of a multi-antenna wireless system. In this context, symbol-level precoding achieves a constructive interference effect which results in SINR gains at the receivers side. Usually the constructive interference is exploited in the spatial dimension (multi-user interference), however in this work we consider a spatio-temporal precoding model which allows to exploit the interference also in the temporal dimension (inter-symbol interference). The proposed method, which optimizes the overs ampled transmit waveforms by minimizing the per-antenna transmit power, allows faster-than-Nyquist signaling over multi-user MISO systems without imposing additional complexity at the user terminals. The optimization is performed in a sequential fashion, by splitting the data streams in blocks and handling the inter-block interference. Numerical results are presented to assess the gains of the scheme in terms of effective rate and energy efficiency

    Faster-than-Nyquist Signaling through Spatio-temporal Symbol-level Precoding for the Multiuser MISO Downlink Channel

    Get PDF
    This paper deals with the problem of the interference between multiple co-channel transmissions in the downlink of a multi-antenna wireless system. In this framework, symbol-level precoding is a promising technique which is able to constructively exploit the multi-user interference and to transform it into useful power at the receiver side. While previous works on symbol-level precoding were focused on exploiting the multi-user interference, in this paper we extend this concept by jointly handling the interference both in the spatial dimension (multi-user interference) and in the temporal dimension (inter-symbol interference). Accordingly, we propose a novel precoding method, referred to as spatio-temporal symbol-level precoding. In this new precoding paradigm, faster-than-Nyquist signaling can be applied over multi-user MISO systems, and the inter-symbol interference can be tackled at the transmitter side, without additional complexity for the user terminals. While applying faster-than-Nyquist signaling, the proposed optimization strategies perform a sum power minimization with Quality-of-Service constraints. Numerical results are presented in a comparative fashion to show the effectiveness of the proposed techniques, which outperform the state of the art symbol-level precoding schemes in terms of symbol error rate, effective rate, and energy efficiency

    Symbol-Level Precoding Design Based on Distance Preserving Constructive Interference Regions

    Get PDF
    In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to one of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive some properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noiseless received signal lying on a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their properties, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic program (QP). We provide a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose several alternative optimization approaches, including semidefinite program (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results.Comment: 19 pages, 12 figures, Submitted to IEEE Transactions in Signal Processin

    Constructive Interference for Generic Constellations

    Get PDF
    In this letter, we investigate optimal and relaxed constructive interference regions (CIR) for the symbol-level precoding (SLP) problem in the downlink of a multiuser multiple-input single-output (MISO) channel.We define two types of CIRs, namely, distance preserving CIR (DPCIR) and union bound CIR (UBCIR) for any given constellation shape and size. We then provide a systematic way to describe these regions as convex sets. Using the definitions of DPCIR and UBCIR, we show that the SLP power minimization problem, minimizing either sum or peak (per-antenna) transmit power, can always be formulated as a convex optimization problem. Our results indicate that these regions allow further reduction of the transmit power compared to the current state of the art without increasing the computational complexity at the transmitter or receiver

    PAPR Minimization through Spatio-temporal Symbol-level Precoding for the Non-linear Multi-user MISO Channel

    Get PDF
    Symbol-level precoding (SLP) is a promising technique which allows to constructively exploit the multi-user interference in the downlink of multiple antenna systems. Recently, this approach has also been used in the context of non-linear systems for reducing the instantaneous power imbalances among the antennas. However, previous works have not exploited SLP to improve the dynamic properties of the waveforms in the temporal dimension, which are fundamental for non-linear systems. To fill this gap, this paper proposes a novel precoding method, referred to as spatio-temporal SLP, which minimizes the peak-to-average power ratio of the transmitted waveforms both in the spatial and in the temporal dimensions, while at the same time exploiting the constructive interference effect. Numerical results are presented to highlight the enhanced performance of the proposed scheme with respect to state of the art SLP techniques, in terms of power distribution and symbol error rate over non-linear channels

    Symbol-Level Precoding Design Based on Distance Preserving Constructive Interference Regions

    Get PDF
    In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic two-dimensional constellations with any shape and size, and confine ourselves to one of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive several properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noise-free received signal in a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their characteristics, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic programming (QP). We derive a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose alternative optimization approaches, including semidefinite programming (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results
    corecore