889 research outputs found

    Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications

    Get PDF
    In this article, we experimentally demonstrate a novel expanded nonorthogonal multiband super-Nyquist carrier-less amplitude and phase (m-ESCAP) modulation for bandlimited organic visible light communication (VLC) systems. The proposed scheme has the same bandwidth requirement as the conventional m-CAP while breaking the orthogonality between subcarriers by purposely overlapping them. We compare m-ESCAP with the conventional m-CAP and a compressed nonorthogonal version of m-CAP (m-SCAP) in terms of measured bit error rate (BER) performance, bit rates, and spectral efficiencies. We show that the m-ESCAP system offers improvement in the bit rate of ∌\sim 10% and 20% compared to the m-CAP and m-SCAP, respectively, and in the spectral efficiency of ∌\sim 20% compared to m-CAP. These gains are achieved at the cost of increased BER, which, however, remains below the 7% forward error correction limit

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems

    Get PDF
    Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems

    Using zero padding for robust channel Estimation in SEFDM systems

    Get PDF

    Non-orthogonal signal transmission over nonlinear optical channels

    Get PDF
    The performance of spectrally efficient frequency division multiplexing (SEFDM) in optical communication systems is investigated considering the impact of fiber nonlinearities. Relative to orthogonal frequency division multiplexing (OFDM), sub-carriers within SEFDM signals are packed closer at a frequency spacing less than the symbol rate. In order to recover the data, a specially designed sphere decoding detector is used at the receiver end to compensate for the self-created inter carrier interference encountered in SEFDM signals. Our research demonstrated the benefits of the use of sphere decoding in SEFDM and also demonstrates the performance improvement of long-haul optical communication systems using SEFDM compared to the use of conventional OFDM, when fiber nonlinearities are considered. Different modulation formats ranging from4QAM to 32QAM are studied and it is shown that, for the same spectral efficiency and information rate, SEFDM signals allow a significant increase in the transmission distance compared to conventional OFDM signals

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF
    • 

    corecore