48,138 research outputs found

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing

    Joint Scheduling and Resource Allocation in the OFDMA Downlink: Utility Maximization under Imperfect Channel-State Information

    Full text link
    We consider the problem of simultaneous user-scheduling, power-allocation, and rate-selection in an OFDMA downlink, with the goal of maximizing expected sum-utility under a sum-power constraint. In doing so, we consider a family of generic goodput-based utilities that facilitate, e.g., throughput-based pricing, quality-of-service enforcement, and/or the treatment of practical modulation-and-coding schemes (MCS). Since perfect knowledge of channel state information (CSI) may be difficult to maintain at the base-station, especially when the number of users and/or subchannels is large, we consider scheduling and resource allocation under imperfect CSI, where the channel state is described by a generic probability distribution. First, we consider the "continuous" case where multiple users and/or code rates can time-share a single OFDMA subchannel and time slot. This yields a non-convex optimization problem that we convert into a convex optimization problem and solve exactly using a dual optimization approach. Second, we consider the "discrete" case where only a single user and code rate is allowed per OFDMA subchannel per time slot. For the mixed-integer optimization problem that arises, we discuss the connections it has with the continuous case and show that it can solved exactly in some situations. For the other situations, we present a bound on the optimality gap. For both cases, we provide algorithmic implementations of the obtained solution. Finally, we study, numerically, the performance of the proposed algorithms under various degrees of CSI uncertainty, utilities, and OFDMA system configurations. In addition, we demonstrate advantages relative to existing state-of-the-art algorithms
    • …
    corecore