19 research outputs found

    Learning and inference with Wasserstein metrics

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 131-143).This thesis develops new approaches for three problems in machine learning, using tools from the study of optimal transport (or Wasserstein) distances between probability distributions. Optimal transport distances capture an intuitive notion of similarity between distributions, by incorporating the underlying geometry of the domain of the distributions. Despite their intuitive appeal, optimal transport distances are often difficult to apply in practice, as computing them requires solving a costly optimization problem. In each setting studied here, we describe a numerical method that overcomes this computational bottleneck and enables scaling to real data. In the first part, we consider the problem of multi-output learning in the presence of a metric on the output domain. We develop a loss function that measures the Wasserstein distance between the prediction and ground truth, and describe an efficient learning algorithm based on entropic regularization of the optimal transport problem. We additionally propose a novel extension of the Wasserstein distance from probability measures to unnormalized measures, which is applicable in settings where the ground truth is not naturally expressed as a probability distribution. We show statistical learning bounds for both the Wasserstein loss and its unnormalized counterpart. The Wasserstein loss can encourage smoothness of the predictions with respect to a chosen metric on the output space. We demonstrate this property on a real-data image tagging problem, outperforming a baseline that doesn't use the metric. In the second part, we consider the probabilistic inference problem for diffusion processes. Such processes model a variety of stochastic phenomena and appear often in continuous-time state space models. Exact inference for diffusion processes is generally intractable. In this work, we describe a novel approximate inference method, which is based on a characterization of the diffusion as following a gradient flow in a space of probability densities endowed with a Wasserstein metric. Existing methods for computing this Wasserstein gradient flow rely on discretizing the underlying domain of the diffusion, prohibiting their application to problems in more than several dimensions. In the current work, we propose a novel algorithm for computing a Wasserstein gradient flow that operates directly in a space of continuous functions, free of any underlying mesh. We apply our approximate gradient flow to the problem of filtering a diffusion, showing superior performance where standard filters struggle. Finally, we study the ecological inference problem, which is that of reasoning from aggregate measurements of a population to inferences about the individual behaviors of its members. This problem arises often when dealing with data from economics and political sciences, such as when attempting to infer the demographic breakdown of votes for each political party, given only the aggregate demographic and vote counts separately. Ecological inference is generally ill-posed, and requires prior information to distinguish a unique solution. We propose a novel, general framework for ecological inference that allows for a variety of priors and enables efficient computation of the most probable solution. Unlike previous methods, which rely on Monte Carlo estimates of the posterior, our inference procedure uses an efficient fixed point iteration that is linearly convergent. Given suitable prior information, our method can achieve more accurate inferences than existing methods. We additionally explore a sampling algorithm for estimating credible regions.by Charles Frogner.Ph. D

    Virtual assistant with natural language processing capabilities

    Get PDF
    During this thesis, an end-to-end solution was provided, creating and developing a Chatbot which, thanks to natural language processing techniques, is able to answer very complex questions, often requiring even more complex answers, in a well-defined area

    Progress Report : 1991 - 1994

    Get PDF

    Attribute-based Image Retrieval: Towards Bridging the Semantic and Intention Gaps

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Practical activities in mathematics learning

    Get PDF

    Case based design of knitwear

    Get PDF
    In the developed world we are surrounded by man-made objects, but most people give little thought to the complex processes needed for their design. The design of hand knitting is complex because much of the domain knowledge is tacit. The objective of this thesis is to devise a methodology to help designers to work within design constraints, whilst facilitating creativity. A hybrid solution including computer aided design (CAD) and case based reasoning (CBR) is proposed. The CAD system creates designs using domain-specific rules and these designs are employed for initial seeding of the case base and the management of constraints. CBR reuses the designer's previous experience. The key aspects in the CBR system are measuring the similarity of cases and adapting past solutions to the current problem. Similarity is measured by asking the user to rank the importance of features; the ranks are then used to calculate weights for an algorithm which compares the specifications of designs. A novel adaptation operator called rule difference replay (RDR) is created. When the specifications to a new design is presented, the CAD program uses it to construct a design constituting an approximate solution. The most similar design from the case-base is then retrieved and RDR replays the changes previously made to the retrieved design on the new solution. A measure of solution similarity that can validate subjective success scores is created. Specification similarity can be used as a guide whether to invoke CBR, in a hybrid CAD-CBR system. If the newly resulted design is suffciently similar to a previous design, then CBR is invoked; otherwise CAD is used. The application of RDR to knitwear design has demonstrated the flexibility to overcome deficiencies in rules that try to automate creativity, and has the potential to be applied to other domains such as interior design

    Case based design of knitwear

    Get PDF
    In the developed world we are surrounded by man-made objects, but most people give little thought to the complex processes needed for their design. The design of hand knitting is complex because much of the domain knowledge is tacit. The objective of this thesis is to devise a methodology to help designers to work within design constraints, whilst facilitating creativity. A hybrid solution including computer aided design (CAD) and case based reasoning (CBR) is proposed. The CAD system creates designs using domain-specific rules and these designs are employed for initial seeding of the case base and the management of constraints. CBR reuses the designer's previous experience. The key aspects in the CBR system are measuring the similarity of cases and adapting past solutions to the current problem. Similarity is measured by asking the user to rank the importance of features; the ranks are then used to calculate weights for an algorithm which compares the specifications of designs. A novel adaptation operator called rule difference replay (RDR) is created. When the specifications to a new design is presented, the CAD program uses it to construct a design constituting an approximate solution. The most similar design from the case-base is then retrieved and RDR replays the changes previously made to the retrieved design on the new solution. A measure of solution similarity that can validate subjective success scores is created. Specification similarity can be used as a guide whether to invoke CBR, in a hybrid CAD-CBR system. If the newly resulted design is suffciently similar to a previous design, then CBR is invoked; otherwise CAD is used. The application of RDR to knitwear design has demonstrated the flexibility to overcome deficiencies in rules that try to automate creativity, and has the potential to be applied to other domains such as interior design.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Deep Interpretability Methods for Neuroimaging

    Get PDF
    Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Nevertheless, the difficulty of reliable training on high-dimensional but small-sample datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this dissertation, we address these challenges by proposing a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. The developed model is pre-trainable and alleviates the need to collect an enormous amount of neuroimaging samples to achieve optimal training. We also provide a quantitative validation module, Retain and Retrain (RAR), that can objectively verify the higher predictability of the dynamics learned by the model. Results successfully demonstrate that the proposed framework enables learning the fMRI dynamics directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction. We also comprehensively reviewed deep interpretability literature in the neuroimaging domain. Our analysis reveals the ongoing trend of interpretability practices in neuroimaging studies and identifies the gaps that should be addressed for effective human-machine collaboration in this domain. This dissertation also proposed a post hoc interpretability method, Geometrically Guided Integrated Gradients (GGIG), that leverages geometric properties of the functional space as learned by a deep learning model. With extensive experiments and quantitative validation on MNIST and ImageNet datasets, we demonstrate that GGIG outperforms integrated gradients (IG), which is considered to be a popular interpretability method in the literature. As GGIG is able to identify the contours of the discriminative regions in the input space, GGIG may be useful in various medical imaging tasks where fine-grained localization as an explanation is beneficial
    corecore