54 research outputs found

    Efficient Computation for Pairing Based Cryptography: A State of the Art

    Get PDF

    Efficient subgroup exponentiation in quadratic and sixth degree extensions

    Get PDF
    This paper describes several speedups for computation in the order p + 1 subgroup of F*(p2) and the order p2 - p + 1 subgroup of F*(p6). These results are in a way complementary to LUC and XTR, where computations in these groups are sped up using trace maps. As a side result, we present an efficient method for XTR with p ≡ 3 mod

    Performance Evaluation of Optimal Ate Pairing on Low-Cost Single Microprocessor Platform

    Get PDF
    The framework of low-cost interconnected devices forms a new kind of cryptographic environment with diverse requirements. Due to the minimal resource capacity of the devices, light-weight cryptographic algorithms are favored. Many applications of IoT work autonomously and process sensible data, which emphasizes security needs, and might also cause a need for specific security measures. A bilinear pairing is a mapping based on groups formed by elliptic curves over extension fields. The pairings are the key-enabler for versatile cryptosystems, such as certificateless signatures and searchable encryption. However, they have a major computational overhead, which coincides with the requirements of the low-cost devices. Nonetheless, the bilinear pairings are the only known approach for many cryptographic protocols so their feasibility should certainly be studied, as they might turn out to be necessary for some future IoT solutions. Promising results already exist for high-frequency CPU:s and platforms with hardware extensions. In this work, we study the feasibility of computing the optimal ate pairing over the BN254 curve, on a 64 MHz Cortex-M33 based platform by utilizing an optimized open-source library. The project is carried out for the company Nordic Semiconductor. As a result, the pairing was effectively computed in under 26* 10^6 cycles, or in 410 ms. The resulting pairing enables a limited usage of pairing-based cryptography, with a capacity of at most few cryptographic operations, such as ID-based key verifications per second. Referring to other relevant works, a competent pairing application would require either a high-frequency - and thus high consuming - microprocessor, or a customized FPGA. Moreover, it is noted that the research in efficient pairing-based cryptography is constantly taking steps forward in every front-line: efficient algorithms, protocols, and hardware-solutions

    XTR and Tori

    Get PDF
    At the turn of the century, 80-bit security was the standard. When considering discrete-log based cryptosystems, it could be achieved using either subgroups of 1024-bit finite fields or using (hyper)elliptic curves. The latter would allow more compact and efficient arithmetic, until Lenstra and Verheul invented XTR. Here XTR stands for \u27ECSTR\u27, itself an abbreviation for Efficient and Compact Subgroup Trace Representation. XTR exploits algebraic properties of the cyclotomic subgroup of sixth degree extension fields, allowing representation only a third of their regular size, making finite field DLP-based systems competitive with elliptic curve ones. Subsequent developments, such as the move to 128-bit security and improvements in finite field DLP, rendered the original XTR and closely related torus-based cryptosystems no longer competitive with elliptic curves. Yet, some of the techniques related to XTR are still relevant for certain pairing-based cryptosystems. This chapter describes the past and the present of XTR and other methods for efficient and compact subgroup arithmetic

    Novel Area-Efficient and Flexible Architectures for Optimal Ate Pairing on FPGA

    Full text link
    While FPGA is a suitable platform for implementing cryptographic algorithms, there are several challenges associated with implementing Optimal Ate pairing on FPGA, such as security, limited computing resources, and high power consumption. To overcome these issues, this study introduces three approaches that can execute the optimal Ate pairing on Barreto-Naehrig curves using Jacobean coordinates with the goal of reaching 128-bit security on the Genesys board. The first approach is a pure software implementation utilizing the MicroBlaze processor. The second involves a combination of software and hardware, with key operations in FpF_{p} and Fp2F_{p^{2}} being transformed into IP cores for the MicroBlaze. The third approach builds on the second by incorporating parallelism to improve the pairing process. The utilization of multiple MicroBlaze processors within a single system offers both versatility and parallelism to speed up pairing calculations. A variety of methods and parameters are used to optimize the pairing computation, including Montgomery modular multiplication, the Karatsuba method, Jacobean coordinates, the Complex squaring method, sparse multiplication, squaring in Gϕ6Fp12G_{\phi 6}F_{p^{12}}, and the addition chain method. The proposed systems are designed to efficiently utilize limited resources in restricted environments, while still completing tasks in a timely manner.Comment: 13 pages, 8 figures, and 5 table

    Efficient software implementation of elliptic curves and bilinear pairings

    Get PDF
    Orientador: Júlio César Lopez HernándezTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O advento da criptografia assimétrica ou de chave pública possibilitou a aplicação de criptografia em novos cenários, como assinaturas digitais e comércio eletrônico, tornando-a componente vital para o fornecimento de confidencialidade e autenticação em meios de comunicação. Dentre os métodos mais eficientes de criptografia assimétrica, a criptografia de curvas elípticas destaca-se pelos baixos requisitos de armazenamento para chaves e custo computacional para execução. A descoberta relativamente recente da criptografia baseada em emparelhamentos bilineares sobre curvas elípticas permitiu ainda sua flexibilização e a construção de sistemas criptográficos com propriedades inovadoras, como sistemas baseados em identidades e suas variantes. Porém, o custo computacional de criptossistemas baseados em emparelhamentos ainda permanece significativamente maior do que os assimétricos tradicionais, representando um obstáculo para sua adoção, especialmente em dispositivos com recursos limitados. As contribuições deste trabalho objetivam aprimorar o desempenho de criptossistemas baseados em curvas elípticas e emparelhamentos bilineares e consistem em: (i) implementação eficiente de corpos binários em arquiteturas embutidas de 8 bits (microcontroladores presentes em sensores sem fio); (ii) formulação eficiente de aritmética em corpos binários para conjuntos vetoriais de arquiteturas de 64 bits e famílias mais recentes de processadores desktop dotadas de suporte nativo à multiplicação em corpos binários; (iii) técnicas para implementação serial e paralela de curvas elípticas binárias e emparelhamentos bilineares simétricos e assimétricos definidos sobre corpos primos ou binários. Estas contribuições permitiram obter significativos ganhos de desempenho e, conseqüentemente, uma série de recordes de velocidade para o cálculo de diversos algoritmos criptográficos relevantes em arquiteturas modernas que vão de sistemas embarcados de 8 bits a processadores com 8 coresAbstract: The development of asymmetric or public key cryptography made possible new applications of cryptography such as digital signatures and electronic commerce. Cryptography is now a vital component for providing confidentiality and authentication in communication infra-structures. Elliptic Curve Cryptography is among the most efficient public-key methods because of its low storage and computational requirements. The relatively recent advent of Pairing-Based Cryptography allowed the further construction of flexible and innovative cryptographic solutions like Identity-Based Cryptography and variants. However, the computational cost of pairing-based cryptosystems remains significantly higher than traditional public key cryptosystems and thus an important obstacle for adoption, specially in resource-constrained devices. The main contributions of this work aim to improve the performance of curve-based cryptosystems, consisting of: (i) efficient implementation of binary fields in 8-bit microcontrollers embedded in sensor network nodes; (ii) efficient formulation of binary field arithmetic in terms of vector instructions present in 64-bit architectures, and on the recently-introduced native support for binary field multiplication in the latest Intel microarchitecture families; (iii) techniques for serial and parallel implementation of binary elliptic curves and symmetric and asymmetric pairings defined over prime and binary fields. These contributions produced important performance improvements and, consequently, several speed records for computing relevant cryptographic algorithms in modern computer architectures ranging from embedded 8-bit microcontrollers to 8-core processorsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    A FPGA pairing implementation using the Residue Number System

    Get PDF
    Recently, a lot of progresses have been made in software implementations of pairings at the 128-bit security level in large characteristic. In this work, we obtain analogous progresses for hardware implementations. For this, we use the RNS representation of numbers which is especially well suited for pairing computation in a hardware context. A FPGA implementation is proposed, based on an adaptation of Guillermin\u27s architecture which computes a pairing in 1.07 ms. It is 2 times faster than all previous hardware implementations (including ASIC and small characteristic implementations) and almost as fast as best software implementations
    corecore