111 research outputs found

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Linear Time Parameterized Algorithms via Skew-Symmetric Multicuts

    Full text link
    A skew-symmetric graph (D=(V,A),σ)(D=(V,A),\sigma) is a directed graph DD with an involution σ\sigma on the set of vertices and arcs. In this paper, we introduce a separation problem, dd-Skew-Symmetric Multicut, where we are given a skew-symmetric graph DD, a family of T\cal T of dd-sized subsets of vertices and an integer kk. The objective is to decide if there is a set X⊆AX\subseteq A of kk arcs such that every set JJ in the family has a vertex vv such that vv and σ(v)\sigma(v) are in different connected components of D′=(V,A∖(X∪σ(X))D'=(V,A\setminus (X\cup \sigma(X)). In this paper, we give an algorithm for this problem which runs in time O((4d)k(m+n+ℓ))O((4d)^{k}(m+n+\ell)), where mm is the number of arcs in the graph, nn the number of vertices and ℓ\ell the length of the family given in the input. Using our algorithm, we show that Almost 2-SAT has an algorithm with running time O(4kk4ℓ)O(4^kk^4\ell) and we obtain algorithms for {\sc Odd Cycle Transversal} and {\sc Edge Bipartization} which run in time O(4kk4(m+n))O(4^kk^4(m+n)) and O(4kk5(m+n))O(4^kk^5(m+n)) respectively. This resolves an open problem posed by Reed, Smith and Vetta [Operations Research Letters, 2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi and Reed [SODA, 2010]. We also show that Deletion q-Horn Backdoor Set Detection is a special case of 3-Skew-Symmetric Multicut, giving us an algorithm for Deletion q-Horn Backdoor Set Detection which runs in time O(12kk5ℓ)O(12^kk^5\ell). This gives the first fixed-parameter tractable algorithm for this problem answering a question posed in a paper by a superset of the authors [STACS, 2013]. Using this result, we get an algorithm for Satisfiability which runs in time O(12kk5ℓ)O(12^kk^5\ell) where kk is the size of the smallest q-Horn deletion backdoor set, with ℓ\ell being the length of the input formula

    Edge Bipartization Faster Than 2^k

    Get PDF
    In the Edge Bipartization problem one is given an undirected graph GG and an integer kk, and the question is whether kk edges can be deleted from GG so that it becomes bipartite. In 2006, Guo et al. [J. Comput. Syst. Sci., 72(8):1386-1396, 2006] proposed an algorithm solving this problem in time O(2km2)O(2^k m^2); today, this algorithm is a textbook example of an application of the iterative compression technique. Despite extensive progress in the understanding of the parameterized complexity of graph separation problems in the recent years, no significant improvement upon this result has been yet reported. We present an algorithm for Edge Bipartization that works in time O(1.977knm)O(1.977^k nm), which is the first algorithm with the running time dependence on the parameter better than 2k2^k. To this end, we combine the general iterative compression strategy of Guo et al. [J. Comput. Syst. Sci., 72(8):1386-1396, 2006], the technique proposed by Wahlstrom [SODA 2014, 1762-1781] of using a polynomial-time solvable relaxation in the form of a Valued Constraint Satisfaction Problem to guide a bounded-depth branching algorithm, and an involved Measure & Conquer analysis of the recursion tree

    On bipartization of cubic graphs by removal of an independent set

    Get PDF
    We study a new problem for cubic graphs: bipartization of a cubic graph Q by deleting sufficiently large independent set I. It can be expressed as follows: Given a connected n-vertex tripartite cubic graph Q = (V, E) with independence number α(Q), does Q contain an independent set I of size k such that Q − I is bipartite? We are interested for which value of k the answer to this question is affirmative. We prove constructively that if α(Q) ≥ 4n/10, then the answer is positive for each k fulfilling ⌊(n − α(Q))/2⌋ ≤ k ≤ α(Q). It remains an open question if a similar construction is possible for cubic graphs with α(Q) \u3c 4n/10. Next, we show that this problem with α(Q) ≥ 4n/10 and k fulfilling inequalities ⌊n/3⌋ ≤ k ≤ α(Q) can be related to semi-equitable graph 3-coloring, where one color class is of size k, and the subgraph induced by the remaining vertices is equitably 2-colored. This means that Q has a coloring of type (k, ⌈(n − k)/2⌉, ⌊(n − k)/2⌋)
    • …
    corecore