156 research outputs found

    Understanding Coarsening for Embedding Large-Scale Graphs

    Full text link
    A significant portion of the data today, e.g, social networks, web connections, etc., can be modeled by graphs. A proper analysis of graphs with Machine Learning (ML) algorithms has the potential to yield far-reaching insights into many areas of research and industry. However, the irregular structure of graph data constitutes an obstacle for running ML tasks on graphs such as link prediction, node classification, and anomaly detection. Graph embedding is a compute-intensive process of representing graphs as a set of vectors in a d-dimensional space, which in turn makes it amenable to ML tasks. Many approaches have been proposed in the literature to improve the performance of graph embedding, e.g., using distributed algorithms, accelerators, and pre-processing techniques. Graph coarsening, which can be considered a pre-processing step, is a structural approximation of a given, large graph with a smaller one. As the literature suggests, the cost of embedding significantly decreases when coarsening is employed. In this work, we thoroughly analyze the impact of the coarsening quality on the embedding performance both in terms of speed and accuracy. Our experiments with a state-of-the-art, fast graph embedding tool show that there is an interplay between the coarsening decisions taken and the embedding quality.Comment: 10 pages, 6 figures, submitted to 2020 IEEE International Conference on Big Dat

    SMGRL: Scalable Multi-resolution Graph Representation Learning

    Full text link
    Graph convolutional networks (GCNs) allow us to learn topologically-aware node embeddings, which can be useful for classification or link prediction. However, they are unable to capture long-range dependencies between nodes without adding additional layers -- which in turn leads to over-smoothing and increased time and space complexity. Further, the complex dependencies between nodes make mini-batching challenging, limiting their applicability to large graphs. We propose a Scalable Multi-resolution Graph Representation Learning (SMGRL) framework that enables us to learn multi-resolution node embeddings efficiently. Our framework is model-agnostic and can be applied to any existing GCN model. We dramatically reduce training costs by training only on a reduced-dimension coarsening of the original graph, then exploit self-similarity to apply the resulting algorithm at multiple resolutions. The resulting multi-resolution embeddings can be aggregated to yield high-quality node embeddings that capture both long- and short-range dependencies. Our experiments show that this leads to improved classification accuracy, without incurring high computational costs.Comment: 22 page
    corecore