223 research outputs found

    Double-Odd Jacobi Quartic

    Get PDF
    Double-odd curves are curves with order equal to 2 modulo 4. A prime order group with complete formulas and a canonical encoding/decoding process could previously be built over a double-odd curve. In this paper, we reformulate such curves as a specific case of the Jacobi quartic. This allows using slightly faster formulas for point operations, as well as defining a more efficient encoding format, so that decoding and encoding have the same cost as classic point compression (decoding is one square root, encoding is one inversion). We define the prime-order groups jq255e and jq255s as the application of that modified encoding to the do255e and do255s groups. We furthermore define an optimized signature mechanism on these groups, that offers shorter signatures (48 bytes instead of the usual 64 bytes, for 128-bit security) and makes signature verification faster (down to less than 83000 cycles on an Intel x86 Coffee Lake core)

    On the Security of Leakage Resilient Public Key Cryptography

    Get PDF
    Side channel attacks, where an attacker learns some physical information about the state of a device, are one of the ways in which cryptographic schemes are broken in practice. "Provably secure" schemes are subject to these attacks since the traditional models of security do not account for them. The theoretical community has recently proposed leakage resilient cryptography in an effort to account for side channel attacks in the security model. This thesis provides an in-depth look into what security guarantees public key leakage resilient schemes provide in practice

    The zheng-seberry public key cryptosystem and signcryption

    Get PDF
    In 1993 Zheng-Seberry presented a public key cryptosystem that was considered efficient and secure in the sense of indistinguishability of encryptions (IND) against an adaptively chosen ciphertext adversary (CCA2). This thesis shows the Zheng-Seberry scheme is not secure as a CCA2 adversary can break the scheme in the sense of IND. In 1998 Cramer-Shoup presented a scheme that was secure against an IND-CCA2 adversary and whose proof relied only on standard assumptions. This thesis modifies this proof and applies it to a modified version of the El-Gamal scheme. This resulted in a provably secure scheme relying on the Random Oracle (RO) model, which is more efficient than the original Cramer-Shoup scheme. Although the RO model assumption is needed for security of this new El-Gamal variant, it only relies on it in a minimal way

    Fast batched asynchronous distributed key generation

    Get PDF
    We present new protocols for threshold Schnorr signatures that work in an asynchronous communication setting, providing robustness and optimal resilience. These protocols provide unprecedented performance in terms of communication and computational complexity. In terms of communication complexity, for each signature, a single party must transmit a few dozen group elements and scalars across the network (independent of the size of the signing committee). In terms of computational complexity, the amortized cost for one party to generate a signature is actually less than that of just running the standard Schnorr signing or verification algorithm (at least for moderately sized signing committees, say, up to 100). For example, we estimate that with a signing committee of 49 parties, at most 16 of which are corrupt, we can generate 50,000 Schnorr signatures per second (assuming each party can dedicate one standard CPU core and 500Mbs of network bandwidth to signing). Importantly, this estimate includes both the cost of an offline precomputation phase (which just churns out message independent presignatures ) and an online signature generation phase. Also, the online signing phase can generate a signature with very little network latency (just one to three rounds, depending on how throughput and latency are balanced). To achieve this result, we provide two new innovations. One is a new secret sharing protocol (again, asynchronous, robust, optimally resilient) that allows the dealer to securely distribute shares of a large batch of ephemeral secret keys, and to publish the corresponding ephemeral public keys. To achieve better performance, our protocol minimizes public-key operations, and in particular, is based on a novel technique that does not use the traditional technique based on polynomial commitments . The second innovation is a new algorithm to efficiently combine ephemeral public keys contributed by different parties (some possibly corrupt) into a smaller number of secure ephemeral public keys. This new algorithm is based on a novel construction of a so-called super-invertible matrix along with a corresponding highly-efficient algorithm for multiplying this matrix by a vector of group elements. As protocols for verifiably sharing a secret key with an associated public key and the technology of super-invertible matrices both play a major role in threshold cryptography and multi-party computation, our two new innovations should have applicability well beyond that of threshold Schnorr signatures

    Batch Verification of Elliptic Curve Digital Signatures

    Get PDF
    This thesis investigates the efficiency of batching the verification of elliptic curve signatures. The first signature scheme considered is a modification of ECDSA proposed by Antipa et al.\ along with a batch verification algorithm by Cheon and Yi. Next, Bernstein's EdDSA signature scheme and the Bos-Coster multi-exponentiation algorithm are presented and the asymptotic runtime is examined. Following background on bilinear pairings, the Camenisch-Hohenberger-Pedersen (CHP) pairing-based signature scheme is presented in the Type 3 setting, along with the derivative BN-IBV due to Zhang, Lu, Lin, Ho and Shen. We proceed to count field operations for each signature scheme and an exact analysis of the results is given. When considered in the context of batch verification, we find that the Cheon-Yi and Bos-Coster methods have similar costs in practice (assuming the same curve model). We also find that when batch verifying signatures, CHP is only 11\% slower than EdDSA with Bos-Coster, a significant improvement over the gap in single verification cost between the two schemes

    Security Standardisation Research

    Full text link

    A secure bulletin board

    Get PDF

    XTR and Tori

    Get PDF
    At the turn of the century, 80-bit security was the standard. When considering discrete-log based cryptosystems, it could be achieved using either subgroups of 1024-bit finite fields or using (hyper)elliptic curves. The latter would allow more compact and efficient arithmetic, until Lenstra and Verheul invented XTR. Here XTR stands for \u27ECSTR\u27, itself an abbreviation for Efficient and Compact Subgroup Trace Representation. XTR exploits algebraic properties of the cyclotomic subgroup of sixth degree extension fields, allowing representation only a third of their regular size, making finite field DLP-based systems competitive with elliptic curve ones. Subsequent developments, such as the move to 128-bit security and improvements in finite field DLP, rendered the original XTR and closely related torus-based cryptosystems no longer competitive with elliptic curves. Yet, some of the techniques related to XTR are still relevant for certain pairing-based cryptosystems. This chapter describes the past and the present of XTR and other methods for efficient and compact subgroup arithmetic

    CSI-Otter: Isogeny-based (Partially) Blind Signatures from the Class Group Action with a Twist

    Get PDF
    In this paper, we construct the first provably-secure isogeny-based (partially) blind signature scheme. While at a high level the scheme resembles the Schnorr blind signature, our work does not directly follow from that construction, since isogenies do not offer as rich an algebraic structure. Specifically, our protocol does not fit into the linear identification protocol abstraction introduced by Hauck, Kiltz, and Loss (EUROCYRPT\u2719), which was used to generically construct Schnorr-like blind signatures based on modules such as classical groups and lattices. Consequently, our scheme is provably-secure in the poly-logarithmic (in the number of security parameter) concurrent execution and does not seem susceptible to the recent efficient ROS attack exploiting the linear nature of the underlying mathematical tool. In more detail, our blind signature exploits the quadratic twist of an elliptic curve in an essential way to endow isogenies with a strictly richer structure than abstract group actions (but still more restrictive than modules). The basic scheme has public key size 128128~B and signature size 88~KB under the CSIDH-512 parameter sets---these are the smallest among all provably secure post-quantum secure blind signatures. Relying on a new ring variant of the group action inverse problem rGAIP, we can halve the signature size to 4~KB while increasing the public key size to 512~B. We provide preliminary cryptanalysis of rGAIP and show that for certain parameter settings, it is essentially as secure as the standard GAIP. Finally, we show a novel way to turn our blind signature into a partially blind signature, where we deviate from prior methods since they require hashing into the set of public keys while hiding the corresponding secret key---constructing such a hash function in the isogeny setting remains an open problem
    corecore