31 research outputs found

    SOAP3-dp: Fast, Accurate and Sensitive GPU-based Short Read Aligner

    Get PDF
    To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, GEM and GPU-based aligners including BarraCUDA and CUSHAW, SOAP3-dp is two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60 percent. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1 percent FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides a scoring scheme same as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A.Comment: 21 pages, 6 figures, submitted to PLoS ONE, additional files available at "https://www.dropbox.com/sh/bhclhxpoiubh371/O5CO_CkXQE". Comments most welcom

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    FPGA acceleration of DNA sequencing analysis and storage

    No full text
    In this work we explore how Field-Programmable Gate Arrays (FPGAs) can be used to alleviate the data processing bottlenecks in DNA sequencing. We focus our efforts on accelerating the FM-index, a data structure used to solve the computationally intensive string matching problems found in DNA sequencing analysis such as short read alignment. The main contributions of this work are: 1) We accelerate the FM-index using FPGAs and develop several novel methods for reducing the memory bottleneck of the search algorithm. These methods include customising the FM-index structure according to the memory architecture of the FPGA platform and minimising the number of memory accesses through both architectural and algorithmic optimisations. 2) We present a new approach for accelerating approximate string matching using the backtracking FM-index. This approach makes use of specialised approximate string matching modules and a run-time reconfigurable architecture in order to achieve both high sensitivity and high performance. 3) We extend the FM-index search algorithm for reference-based compression and accelerate it using FPGAs. This accelerated design is integrated into fastqZip and fastaZip, two new tools that we have developed for the fast and effective compression of sequence data stored in the FASTQ and FASTA formats respectively. We implement our designs on the Maxeler Max4 Platform and show that they are able to outperform state-of-the-art DNA sequencing analysis software. For instance, our hardware-accelerated compression tool for FASTQ data is able to achieve a higher compression ratio than the best performing tool, fastqz, whilst the average compression and decompression speeds are 25 and 43 times faster respectively.Open Acces

    IMPROVING BWA-MEM WITH GPU PARALLEL COMPUTING

    Get PDF
    Due to the many advances made in designing algorithms, especially the ones used in bioinformatics, it is becoming harder and harder to improve their efficiencies. Therefore, hardware acceleration using General-Purpose computing on Graphics Processing Unit has become a popular choice. BWA-MEM is an important part of the BWA software package for sequence mapping. Because of its high speed and accuracy, we choose to parallelize the popular short DNA sequence mapper. BWA has been a prevalent single node tool in genome alignment, and it has been widely studied for acceleration for a long time since the first version of the BWA package came out. This thesis presents the Big Data GPGPU distributed BWA-MEM, a tool that combines GPGPU acceleration and distributed computing. The four hardware parallelization techniques used are CPU multi-threading, GPU paralleled, CPU distributed, and GPU distributed. The GPGPU distributed software typically outperforms other parallelization versions. The alignment is performed on a distributed network, and each node in the network executes a separate GPGPU paralleled version of the software. We parallelize the chain2aln function in three levels. In Level 1, the function ksw\_extend2, an algorithm based on Smith-Waterman, is parallelized to handle extension on one side of the seed. In Level 2, the function chain2aln is parallelized to handle chain extension, where all seeds within the same chain are extended. In Level 3, part of the function mem\_align1\_core is parallelized for extending multiple chains. Due to the program's complexity, the parallelization work was limited at the GPU version of ksw\_extend2 parallelization Level 3. However, we have successfully combined Spark with BWA-MEM and ksw\_extend2 at parallelization Level 1, which has shown that the proposed framework is possible. The paralleled Level 3 GPU version of ksw\_extend2 demonstrated noticeable speed improvement with the test data set
    corecore