12,932 research outputs found

    Faster Coordinate Descent via Adaptive Importance Sampling

    Get PDF
    Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically characterize the performance of our selection rules and demonstrate improvements over the state-of-the-art, and extend our theory and algorithms to general convex objectives. Numerical evidence with hinge-loss support vector machines and Lasso confirm that the practice follows the theory.Comment: appearing at AISTATS 201

    Coordinate Descent with Bandit Sampling

    Full text link
    Coordinate descent methods usually minimize a cost function by updating a random decision variable (corresponding to one coordinate) at a time. Ideally, we would update the decision variable that yields the largest decrease in the cost function. However, finding this coordinate would require checking all of them, which would effectively negate the improvement in computational tractability that coordinate descent is intended to afford. To address this, we propose a new adaptive method for selecting a coordinate. First, we find a lower bound on the amount the cost function decreases when a coordinate is updated. We then use a multi-armed bandit algorithm to learn which coordinates result in the largest lower bound by interleaving this learning with conventional coordinate descent updates except that the coordinate is selected proportionately to the expected decrease. We show that our approach improves the convergence of coordinate descent methods both theoretically and experimentally.Comment: appearing at NeurIPS 201

    Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

    Get PDF
    First-order methods play a central role in large-scale machine learning. Even though many variations exist, each suited to a particular problem, almost all such methods fundamentally rely on two types of algorithmic steps: gradient descent, which yields primal progress, and mirror descent, which yields dual progress. We observe that the performances of gradient and mirror descent are complementary, so that faster algorithms can be designed by LINEARLY COUPLING the two. We show how to reconstruct Nesterov's accelerated gradient methods using linear coupling, which gives a cleaner interpretation than Nesterov's original proofs. We also discuss the power of linear coupling by extending it to many other settings that Nesterov's methods cannot apply to.Comment: A new section added; polished writin
    • …
    corecore