2,967 research outputs found

    Exact Mean Computation in Dynamic Time Warping Spaces

    Full text link
    Dynamic time warping constitutes a major tool for analyzing time series. In particular, computing a mean series of a given sample of series in dynamic time warping spaces (by minimizing the Fr\'echet function) is a challenging computational problem, so far solved by several heuristic and inexact strategies. We spot some inaccuracies in the literature on exact mean computation in dynamic time warping spaces. Our contributions comprise an exact dynamic program computing a mean (useful for benchmarking and evaluating known heuristics). Based on this dynamic program, we empirically study properties like uniqueness and length of a mean. Moreover, experimental evaluations reveal substantial deficits of state-of-the-art heuristics in terms of their output quality. We also give an exact polynomial-time algorithm for the special case of binary time series

    Adaptive Temporal Encoding Network for Video Instance-level Human Parsing

    Full text link
    Beyond the existing single-person and multiple-person human parsing tasks in static images, this paper makes the first attempt to investigate a more realistic video instance-level human parsing that simultaneously segments out each person instance and parses each instance into more fine-grained parts (e.g., head, leg, dress). We introduce a novel Adaptive Temporal Encoding Network (ATEN) that alternatively performs temporal encoding among key frames and flow-guided feature propagation from other consecutive frames between two key frames. Specifically, ATEN first incorporates a Parsing-RCNN to produce the instance-level parsing result for each key frame, which integrates both the global human parsing and instance-level human segmentation into a unified model. To balance between accuracy and efficiency, the flow-guided feature propagation is used to directly parse consecutive frames according to their identified temporal consistency with key frames. On the other hand, ATEN leverages the convolution gated recurrent units (convGRU) to exploit temporal changes over a series of key frames, which are further used to facilitate the frame-level instance-level parsing. By alternatively performing direct feature propagation between consistent frames and temporal encoding network among key frames, our ATEN achieves a good balance between frame-level accuracy and time efficiency, which is a common crucial problem in video object segmentation research. To demonstrate the superiority of our ATEN, extensive experiments are conducted on the most popular video segmentation benchmark (DAVIS) and a newly collected Video Instance-level Parsing (VIP) dataset, which is the first video instance-level human parsing dataset comprised of 404 sequences and over 20k frames with instance-level and pixel-wise annotations.Comment: To appear in ACM MM 2018. Code link: https://github.com/HCPLab-SYSU/ATEN. Dataset link: http://sysu-hcp.net/li
    • …
    corecore