964 research outputs found

    Speech Processing Front-end in Low-power Hardware

    Get PDF
    The objective of this work is to develop analog integrated circuits to serve as low-power auditory front-ends in signal processing systems. An analog front-end can be used for feature-extraction to reduce the requirements of the digital back-end, or to detect and call attention to compelling characteristics of a signal while the back-end is in sleep mode. Such a front-end should be advantageous for speech recognition, noise suppression, auditory scene analysis, hearing prostheses, biological modeling, or hardware-based event detection.;This work presents a spectral decomposition system, which consists of a bandpass filter bank with sub-band magnitude detection. The bandpass filter is low-power and each channel can be individually programmed for different quality factors and passband gains. The novel magnitude detector has a 68 decibel dynamic range, excellent tracking capability, and consumes less than a microwatt of power. The system, which was fabricated in a 0.18 micron process, consists of a 16-channel filter bank and a variety of sub-band computational elements

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Study on wideband voltage controlled oscillator and high efficiency power amplifier ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3604号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/20 ; 早大学位記番号:新595

    Design and Analysis of a Dual Supply Class H Audio Amplifier

    Get PDF
    abstract: Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.Dissertation/ThesisM.S. Electrical Engineering 201

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    High power density AC to DC conversion with reduced input current harmonics

    Get PDF
    PhD ThesisThis thesis investigates the bene ts and challenges arising from the use of minimal capacitance in AC to DC converters. The purpose of the research is to ultimately improve the power density and power factor of electrical systems connected to the grid. This is carried out in the con- text of a low cost brushless DC drive system operating from an o ine power supply. The work begins with a review of existing applications where it is prac- tical to use a limited amount of DC link capacitance. The vast majority of these have a load which is insensitive to supply power variations at twice the line frequency. Low performance motor drives are found to be the most prevalent, with the inertia of the rotor mitigating the e ect of torque ripple. Further research is carried out on active power factor cor- rection techniques suitable for this application, leading to the conclusion that no appropriate systems exist. A power supply is developed to enable a 24V, 200W brushless motor drive to operate from the mains. The system runs successfully using only 1µF of DC link capacitance, which causes the motor supply volt- age to have 100% ripple. It is noted that whilst this drastically reduces the low frequency input current harmonics, those occurring at the load switching frequency are greatly increased. To combat this, a novel active power factor correction system is proposed using a notch lter to detect the input current error. The common problem of voltage feedback ripple is avoided by eliminating the voltage control loop altogether. The main limitations are identi ed as a high sensitivity to load step changes and variations in line frequency. Despite this, a high power factor is maintained in all operating conditions, as well as compliance with the relevant harmonic standards.Dyson Technology Ltd and Newcastle Univer- sit
    corecore