43 research outputs found

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posterior∄⁥prior)\mathrm{KL}(\text{posterior} \operatorname{\|} \text{prior}) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P)L_2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with L∞L_\infty. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity.Comment: 38 page

    A tight excess risk bound via a unified PAC-Bayesian-Rademacher-Shtarkov-MDL complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posterior∄prior) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with L∞. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posterior∄prior) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with L∞. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity

    Generalization Bounds: Perspectives from Information Theory and PAC-Bayes

    Full text link
    A fundamental question in theoretical machine learning is generalization. Over the past decades, the PAC-Bayesian approach has been established as a flexible framework to address the generalization capabilities of machine learning algorithms, and design new ones. Recently, it has garnered increased interest due to its potential applicability for a variety of learning algorithms, including deep neural networks. In parallel, an information-theoretic view of generalization has developed, wherein the relation between generalization and various information measures has been established. This framework is intimately connected to the PAC-Bayesian approach, and a number of results have been independently discovered in both strands. In this monograph, we highlight this strong connection and present a unified treatment of generalization. We present techniques and results that the two perspectives have in common, and discuss the approaches and interpretations that differ. In particular, we demonstrate how many proofs in the area share a modular structure, through which the underlying ideas can be intuited. We pay special attention to the conditional mutual information (CMI) framework; analytical studies of the information complexity of learning algorithms; and the application of the proposed methods to deep learning. This monograph is intended to provide a comprehensive introduction to information-theoretic generalization bounds and their connection to PAC-Bayes, serving as a foundation from which the most recent developments are accessible. It is aimed broadly towards researchers with an interest in generalization and theoretical machine learning.Comment: 222 page

    Instance-Dependent Generalization Bounds via Optimal Transport

    Full text link
    Existing generalization bounds fail to explain crucial factors that drive generalization of modern neural networks. Since such bounds often hold uniformly over all parameters, they suffer from over-parametrization, and fail to account for the strong inductive bias of initialization and stochastic gradient descent. As an alternative, we propose a novel optimal transport interpretation of the generalization problem. This allows us to derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the earned prediction function in the data space. Therefore, our bounds are agnostic to the parametrization of the model and work well when the number of training samples is much smaller than the number of parameters. With small modifications, our approach yields accelerated rates for data on low-dimensional manifolds, and guarantees under distribution shifts. We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.Comment: 50 pages, 7 figure
    corecore