67 research outputs found

    How to Split UL/DL Antennas in Full-Duplex Cellular Networks

    Full text link
    To further improve the potential of full-duplex communications, networks may employ multiple antennas at the base station or user equipment. To this end, networks that employ current radios usually deal with self-interference and multi-user interference by beamforming techniques. Although previous works investigated beamforming design to improve spectral efficiency, the fundamental question of how to split the antennas at a base station between uplink and downlink in full-duplex networks has not been investigated rigorously. This paper addresses this question by posing antenna splitting as a binary nonlinear optimization problem to minimize the sum mean squared error of the received data symbols. It is shown that this is an NP-hard problem. This combinatorial problem is dealt with by equivalent formulations, iterative convex approximations, and a binary relaxation. The proposed algorithm is guaranteed to converge to a stationary solution of the relaxed problem with much smaller complexity than exhaustive search. Numerical results indicate that the proposed solution is close to the optimal in both high and low self-interference capable scenarios, while the usually assumed antenna splitting is far from optimal. For large number of antennas, a simple antenna splitting is close to the proposed solution. This reveals that the importance of antenna splitting is inversely proportional with the number of antennas.Comment: 7 pages, 4 figures. Accepted to IEEE ICC 2018 Workshop on Full-Duplex Communications for Future Wireless Network

    Fluid Antenna-aided Full Duplex Communications: A Macroscopic Point-Of-View

    Full text link
    The synergy of fluid-based reconfigurable antenna (FA) technology and full-duplex (FD) communications can be jointly beneficial, as FD can enhance the spectral efficiency of a point-to-point link, while the new degree of freedom offered by the FA technology can be exploited to handle the overall interference. Hence, in this paper, an analytical framework based on stochastic geometry is developed, aiming to assess both the outage and average sum-rate performance of large-scale FA-aided FD cellular networks. In contrast to existing studies, where perfect channel state information is assumed, the developed framework accurately captures the impact of channel estimation (CE) on the performance of the considered network deployments, as well as the existence of residual loop-interference (LI) at the FD transceivers. Particularly, we focus on a limited coherence interval scenario, where a novel sequential linear minimum-mean-squared-error-based CE method is performed for all FA ports and LI links, followed by data reception from the port with the strongest estimated channel. By using stochastic geometry tools, analytical expressions for the outage and the average sum-rate performance are derived. Our results reveal that FA-aided FD communications experience an improved average sum-rate performance of around 45\% compared to conventional FD communications.Comment: 32 pages, 8 figure

    User Selection Approaches to Mitigate the Straggler Effect for Federated Learning on Cell-Free Massive MIMO Networks

    Get PDF
    This work proposes UE selection approaches to mitigate the straggler effect for federated learning (FL) on cell-free massive multiple-input multiple-output networks. To show how these approaches work, we consider a general FL framework with UE sampling, and aim to minimize the FL training time in this framework. Here, training updates are (S1) broadcast to all the selected UEs from a central server, (S2) computed at the UEs sampled from the selected UE set, and (S3) sent back to the central server. The first approach mitigates the straggler effect in both Steps (S1) and (S3), while the second approach only Step (S3). Two optimization problems are then formulated to jointly optimize UE selection, transmit power and data rate. These mixed-integer mixed-timescale stochastic nonconvex problems capture the complex interactions among the training time, the straggler effect, and UE selection. By employing the online successive convex approximation approach, we develop a novel algorithm to solve the formulated problems with proven convergence to the neighbourhood of their stationary points. Numerical results confirm that our UE selection designs significantly reduce the training time over baseline approaches, especially in the networks that experience serious straggler effects due to the moderately low density of access points.Comment: submitted for peer review

    STAR-RIS Assisted Cell-Free Massive MIMO System Under Spatially-Correlated Channels

    Get PDF
    peer reviewedThis paper investigates the performance of downlink simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted cell-free (CF) massive multiple-input multiple-output (mMIMO) systems, where user equipments (UEs) are located on both sides of the RIS. We account for correlated Rayleigh fading and multiple antennas per access point (AP), while the maximum ratio (MR) beamforming is applied for the design of the active beamforming in terms of instantaneous channel state information (CSI). Firstly, we rely on an aggregated channel estimation approach that reduces the overhead required for channel estimation while providing sufficient information for data processing. We obtain the normalized mean square error (NMSE) of the channel estimate per AP, and design the passive beamforming (PB) of the surface based on the long-time statistical CSI. Next, we derive the received signal in the asymptotic regime of numbers of APs and surface elements. Then, we obtain a closedform expression of the downlink achievable rate for arbitrary numbers of APs and STAR-RIS elements under statistical CSI. Finally, based on the derived expressions, the numerical results show the feasibility and the advantages of deploying a STARRIS into conventional CF mMIMO systems. In particular, we theoretically analyze the properties of STAR-RIS-assisted CF mMIMO systems and reveal explicit insights in terms of the impact of channel correlation, the number of surface elements, and the pilot contamination on the achievable rate

    Analysis and Optimization of Cooperative Wireless Networks

    Get PDF
    Recently, cooperative communication between users in wireless networks has attracted a considerable amount of attention. A significant amount of research has been conducted to optimize the performance of different cooperative communication schemes, subject to some resource constraints such as power, bandwidth, and time. However, in previous research, each optimization problem has been investigated separately, and the optimal solution for one problem is usually not optimal for the other problems. This dissertation focuses on joint optimization or cross-layer optimization in wireless cooperative networks. One important obstacle is the non-convexity of the joint optimization problem, which makes the problem difficult to solve efficiently. The first contribution of this dissertation is the proposal of a method to efficiently solve a joint optimization problem of power allocation, time scheduling and relay selection strategy in Decode-and-Forward cooperative networks. To overcome the non-convexity obstacle, the dual optimization method for non-convex problems \cite{Yu:2006}, is applied by exploiting the time-sharing properties of wireless OFDM systems when the number of subcarriers approaches infinity. The second contribution of this dissertation is the design of practical algorithms to implement the aforementioned method for optimizing the cooperative network. The difficulty of this work is caused by the randomness of the data, specifically, the randomness of the channel condition, and the real-time requirements of computing. The proposed algorithms were analyzed rigorously and the convergence of the algorithms is shown.\\ Furthermore, a joint optimization problem of power allocation and computational functions for the advanced cooperation scheme, Compute-and-Forward, is also analyzed, and an iterative algorithm to solve this problem is also introduced

    Energy-efficient resource allocation in limited fronthaul capacity cloud-radio access networks

    Get PDF
    In recent years, cloud radio access networks (C-RANs) have demonstrated their role as a formidable technology candidate to address the challenging issues from the advent of Fifth Generation (5G) mobile networks. In C-RANs, the modules which are capable of processing data and handling radio signals are physically separated in two main functional groups: the baseband unit (BBU) pool consisting of multiple BBUs on the cloud, and the radio access networks (RANs) consisting of several low-power remote radio heads (RRH) whose functionality are simplified with radio transmission/reception. Thanks to the centralized computation capability of cloud computing, C-RANs enable the coordination between RRHs to significantly improve the achievable spectral efficiency to satisfy the explosive traffic demand from users. More importantly, this enhanced performance can be attained at its power-saving mode, which results in the energy-efficient C-RAN perspective. Note that such improvement can be achieved under an ideal fronthaul condition of very high and stable capacity. However, in practice, dedicated fronthaul links must remarkably be divided to connect a large amount of RRHs to the cloud, leading to a scenario of non-ideal limited fronthaul capacity for each RRH. This imposes a certain upper-bound on each user’s spectral efficiency, which limits the promising achievement of C-RANs. To fully harness the energy-efficient C-RANs while respecting their stringent limited fronthaul capacity characteristics, a more appropriate and efficient network design is essential. The main scope of this thesis aims at optimizing the green performance of C-RANs in terms of energy-efficiency under the non-ideal fronthaul capacity condition, namely energy-efficient design in limited fronthaul capacity C-RANs. Our study, via jointly determining the transmit beamforming, RRH selection, and RRH–user association, targets the following three vital design issues: the optimal trade-off between maximizing achievable sum rate and minimizing total power consumption, the maximum energy-efficiency under adaptive rate-dependent power model, the optimal joint energy-efficient design of virtual computing along with the radio resource allocation in virtualized C-RANs. The significant contributions and novelties of this work can be elaborated in the followings. Firstly, the joint design of transmit beamforming, RRH selection, and RRH–user association to optimize the trade-off between user sum rate maximization and total power consumption minimization in the downlink transmissions of C-RANs is presented in Chapter 3. We develop one powerful with high-complexity and two novel efficient low-complexity algorithms to respectively solve for a global optimal and high-quality sub-optimal solutions. The findings in this chapter show that the proposed algorithms, besides overcoming the burden to solve difficult non-convex problems within a polynomial time, also outperform the techniques in the literature in terms of convergence and achieved network performance. Secondly, Chapter 4 proposes a novel model reflecting the dependence of consumed power on the user data rate and highlights its impact through various energy-efficiency metrics in CRANs. The dominant performance of the results form Chapter 4, compared to the conventional work without adaptive rate-dependent power model, corroborates the importance of the newly proposed model in appropriately conserving the system power to achieve the most energy efficient C-RAN performance. Finally, we propose a novel model on the cloud center which enables the virtualization and adaptive allocation of computing resources according to the data traffic demand to conserve more power in Chapter 5. A problem of jointly designing the virtual computing resource together with the beamforming, RRH selection, and RRH–user association which maximizes the virtualized C-RAN energy-efficiency is considered. To cope with the huge size of the formulated optimization problem, a novel efficient with much lower-complexity algorithm compared to previous work is developed to achieve the solution. The achieved results from different evaluations demonstrate the superiority of the proposed designs compared to the conventional work
    • …
    corecore