51,137 research outputs found

    On Exact and Approximate Solutions for Hard Problems: An Alternative Look

    Get PDF
    We discuss in an informal, general audience style the da Costa-Doria conjecture about the independence of the P = NP hypothesis and try to briefly assess its impact on practical situations in economics. The paper concludes with a discussion of the Coppe-Cosenza procedure, which is an approximate, partly heuristic algorithm for allocation problems.P vs. NP , allocation problem, assignment problem, traveling salesman, exact solution for NP problems, approximate solutions for NP problems, undecidability, incompleteness

    Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications

    Full text link
    We extend the work of Narasimhan and Bilmes [30] for minimizing set functions representable as a difference between submodular functions. Similar to [30], our new algorithms are guaranteed to monotonically reduce the objective function at every step. We empirically and theoretically show that the per-iteration cost of our algorithms is much less than [30], and our algorithms can be used to efficiently minimize a difference between submodular functions under various combinatorial constraints, a problem not previously addressed. We provide computational bounds and a hardness result on the mul- tiplicative inapproximability of minimizing the difference between submodular functions. We show, however, that it is possible to give worst-case additive bounds by providing a polynomial time computable lower-bound on the minima. Finally we show how a number of machine learning problems can be modeled as minimizing the difference between submodular functions. We experimentally show the validity of our algorithms by testing them on the problem of feature selection with submodular cost features.Comment: 17 pages, 8 figures. A shorter version of this appeared in Proc. Uncertainty in Artificial Intelligence (UAI), Catalina Islands, 201

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    Simulations in Early Universe Theory

    Full text link
    We give an impression of the type of results that have been obtained with numerical lattice simulations of field theory in the early universe.Comment: 19 pages, contribution to Lattice 200
    • …
    corecore