24 research outputs found

    Overview of Infrastructure Charging, part 4, IMPROVERAIL Project Deliverable 9, “Improved Data Background to Support Current and Future Infrastructure Charging Systems”

    Get PDF
    Improverail aims are to further support the establishment of railway infrastructure management in accordance with Directive 91/440, as well as the new railway infrastructure directives, by developing the necessary tools for modelling the management of railway infrastructure; by evaluating improved methods for capacity and resources management, which allow the improvement of the Life Cycle Costs (LCC) calculating methods, including elements related to vehicle - infrastructure interaction and external costs; and by improving data background in support of charging for use of railway infrastructure. To achieve these objectives, Improverail is organised along 8 workpackages, with specific objectives, responding to the requirements of the task 2.2.1/10 of the 2nd call made in the 5th RTD Framework Programme in December 1999.This part is the task 7.1 (Review of infrastructure charging systems) to the workpackage 7 (Analysis of the relation between infrastructure cost variation and diversity of infrastructure charging systems).Before explaining the economic characteristics of railway and his basic pricing principles, authors must specify the objectives of railways infrastructure charging.principle of pricing ; rail infrastructure charging ; public service obligation ; rail charging practice ; Europe ; Improverail

    Distributed Constraint Optimization:Privacy Guarantees and Stochastic Uncertainty

    Get PDF
    Distributed Constraint Satisfaction (DisCSP) and Distributed Constraint Optimization (DCOP) are formal frameworks that can be used to model a variety of problems in which multiple decision-makers cooperate towards a common goal: from computing an equilibrium of a game, to vehicle routing problems, to combinatorial auctions. In this thesis, we independently address two important issues in such multi-agent problems: 1) how to provide strong guarantees on the protection of the privacy of the participants, and 2) how to anticipate future, uncontrollable events. On the privacy front, our contributions depart from previous work in two ways. First, we consider not only constraint privacy (the agents' private costs) and decision privacy (keeping the complete solution secret), but also two other types of privacy that have been largely overlooked in the literature: agent privacy, which has to do with protecting the identities of the participants, and topology privacy, which covers information about the agents' co-dependencies. Second, while previous work focused mainly on quantitatively measuring and reducing privacy loss, our algorithms provide stronger, qualitative guarantees on what information will remain secret. Our experiments show that it is possible to provide such privacy guarantees, while still scaling to much larger problems than the previous state of the art. When it comes to reasoning under uncertainty, we propose an extension to the DCOP framework, called DCOP under Stochastic Uncertainty (StochDCOP), which includes uncontrollable, random variables with known probability distributions that model uncertain, future events. The problem becomes one of making "optimal" offline decisions, before the true values of the random variables can be observed. We consider three possible concepts of optimality: minimizing the expected cost, minimizing the worst-case cost, or maximizing the probability of a-posteriori optimality. We propose a new family of StochDCOP algorithms, exploring the tradeoffs between solution quality, computational and message complexity, and privacy. In particular, we show how discovering and reasoning about co-dependencies on common random variables can yield higher-quality solutions

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/2067/thumbnail.jp

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/1690/thumbnail.jp

    History of Construction Cultures Volume 1

    Get PDF
    History of Construction Cultures Volume 1 contains papers presented at the 7ICCH – Seventh International Congress on Construction History, held at the Lisbon School of Architecture, Portugal, from 12 to 16 July, 2021. The conference has been organized by the Lisbon School of Architecture (FAUL), NOVA School of Social Sciences and Humanities, the Portuguese Society for Construction History Studies and the University of the Azores. The contributions cover the wide interdisciplinary spectrum of Construction History and consist on the most recent advances in theory and practical case studies analysis, following themes such as: - epistemological issues; - building actors; - building materials; - building machines, tools and equipment; - construction processes; - building services and techniques ; -structural theory and analysis ; - political, social and economic aspects; - knowledge transfer and cultural translation of construction cultures. Furthermore, papers presented at thematic sessions aim at covering important problematics, historical periods and different regions of the globe, opening new directions for Construction History research. We are what we build and how we build; thus, the study of Construction History is now more than ever at the centre of current debates as to the shape of a sustainable future for humankind. Therefore, History of Construction Cultures is a critical and indispensable work to expand our understanding of the ways in which everyday building activities have been perceived and experienced in different cultures, from ancient times to our century and all over the world

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/2143/thumbnail.jp

    Electronic Payment Systems Observatory (ePSO). Newsletter Issues 9-15

    Get PDF
    Abstract not availableJRC.J-Institute for Prospective Technological Studies (Seville

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/1424/thumbnail.jp

    Pervasive Data Analytics for Sustainable Energy Systems

    Get PDF
    With an ever growing population, global energy demand is predicted to keep increasing. Furthermore, the integration of renewable energy sources into the electricity grid (to reduce carbon emission and humanity's dependency on fossil fuels), complicates efforts to balance supply and demand, since their generation is intermittent and unpredictable. Traditionally, it has always been the supply side that has adapted to follow energy demand, however, in order to have a sustainable energy system for the future, the demand side will have to be better managed to match the available energy supply. In the first part of this thesis, we focus on understanding customers' energy consumption behavior (demand analytics). While previously, information about customer's energy consumption could be obtained only with coarse granularity (e.g., monthly or bimonthly), nowadays, using advanced metering infrastructure (or smart meters), utility companies are able to retrieve it in near real-time. By leveraging smart meter data, we then develop a versatile customer segmentation framework, track cluster changes over time, and identify key characteristics that define a cluster. Additionally, although household-level consumption is hard to predict, it can be used to improve aggregate-level forecasting by first segmenting the households into several clusters, forecasting the energy consumption of each cluster, and then aggregating those forecasts. The improvements provided by this strategy depend not only on the number of clusters, but also on the size of the customer base. Furthermore, we develop an approach to model the uncertainty of future demand. In contrast to previous work that used computationally expensive methods, such as simulation, bootstrapping, or ensemble, we construct prediction intervals directly using the time-varying conditional mean and variance of future demand. While analytics on customer energy data are indeed essential to understanding customer behavior, they could also lead to breaches of privacy, with all the attendant risks. The first part of this thesis closes by exploring symbolic representations of smart meter data which still allow learning algorithms to be performed on top of them, thus providing a trade-off between accurate analytics and the protection of customer privacy. In the second part of this thesis, we focus on mechanisms for incentivizing changes in customers' energy usage in order to maintain (electricity) grid stability, i.e., Demand Response (DR). We complement previous work in this area (which typically targeted large, industrial customers) by studying the application of DR to residential customers. We first study the influence of DR baselines, i.e., estimates of what customers would have consumed in the absence of a DR event. While the literature to date has focused on baseline accuracy and bias, we go beyond these concepts by explaining how a baseline affects customer participation in a DR event, and how it affects both the customer and company profit. We then discuss a strategy for matching the demand side with the supply side by using a multiunit auction performed by intelligent agents on behalf of customers. The thesis closes by eliciting behavioral incentives from the crowd of customers for promoting and maintaining customer engagement in DR programs
    corecore