29,473 research outputs found

    Density-equalizing maps for simply-connected open surfaces

    Full text link
    In this paper, we are concerned with the problem of creating flattening maps of simply-connected open surfaces in R3\mathbb{R}^3. Using a natural principle of density diffusion in physics, we propose an effective algorithm for computing density-equalizing flattening maps with any prescribed density distribution. By varying the initial density distribution, a large variety of mappings with different properties can be achieved. For instance, area-preserving parameterizations of simply-connected open surfaces can be easily computed. Experimental results are presented to demonstrate the effectiveness of our proposed method. Applications to data visualization and surface remeshing are explored

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc

    Motion compensated micro-CT reconstruction for in-situ analysis of dynamic processes

    Get PDF
    This work presents a framework to exploit the synergy between Digital Volume Correlation ( DVC) and iterative CT reconstruction to enhance the quality of high-resolution dynamic X-ray CT (4D-mu CT) and obtain quantitative results from the acquired dataset in the form of 3D strain maps which can be directly correlated to the material properties. Furthermore, we show that the developed framework is capable of strongly reducing motion artifacts even in a dataset containing a single 360 degrees rotation

    Improvements on a simple muscle-based 3D face for realistic facial expressions

    Get PDF
    Facial expressions play an important role in face-to-face communication. With the development of personal computers capable of rendering high quality graphics, computer facial animation has produced more and more realistic facial expressions to enrich human-computer communication. In this paper, we present a simple muscle-based 3D face model that can produce realistic facial expressions in real time. We extend Waters' (1987) muscle model to generate bulges and wrinkles and to improve the combination of multiple muscle actions. In addition, we present techniques to reduce the computation burden on the muscle mode
    corecore