4,389 research outputs found

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Chaotic communications over radio channels

    Get PDF

    Personal area technologies for internetworked services

    Get PDF

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Multiple Access Trade Study

    Get PDF
    The Personal Access Satellite System (PASS) strawman design uses a hybrid Time Division Multiple Access (TDMA)/Frequency Division Multiple Access (FDMA) implementation. TDMA is used for the forward direction (from Suppliers to Users), and FDMA for the return direction (from Users to Suppliers). An alternative architecture is proposed that will require minimal real time coordination and yet provide a fast access method by using random access Code Division Multiple Access (CDMA). The CDMA system issues are addressed such as connecting suppliers and users, both of whom may be located anywhere in the CONUS, when the user terminals are constrained in size and weight; and providing efficient traffic routing under highly variable traffic requirements. It is assumed that bandwidth efficiency is not of paramount importance. CDMA or Spread Spectrum Multiple Access (SSMA) communication is a method in which a group of carriers operate at the same nominal center frequency but are separable from each other by the low cross correlation of the spreading codes used. Interference and multipath rejection capability, ease of selective addressing and message screening, low density power spectra for signal hiding and security, and high resolution ranging are among the benefits of spread spectrum communications
    corecore