12 research outputs found

    Fast substrate noise-aware floorplanning with preference directed graph for mixed-signal SOCs

    Get PDF
    Abstract-In this paper, we introduce a novel substrate noise estimation technique during early floorplanning, based on the concept of Block Preference Directed Graph (BPDG) and Sequence Pair (SP) floorplan representation. Given a set of analog and digital blocks, we can construct the BPDG, which suggests the preferred relative block locations for substrate noise minimization, based on the inherent noise characteristics between these blocks. For each sequence pair instance during floorplanning evaluation, we can count its number of violations against BPDG very efficiently. We observe that the number of violations obtained in this manner highly correlates with the substrate noise from accurate modeling. Thus we can use it to guide fast substrate noise-aware floorplanning instead of expensive model-based substrate noise simulation. Experimental results show that our approach is over 60 times faster than conventional floorplanning with even fast/compact substrate noise model. The proposed approach also provides smaller area and less total substrate noise than a conventional approach for most tested benchmarks

    Thermal-Aware Networked Many-Core Systems

    Get PDF
    Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.Siirretty Doriast

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    High-performance Global Routing for Trillion-gate Systems-on-Chips.

    Full text link
    Due to aggressive transistor scaling, modern-day CMOS circuits have continually increased in both complexity and productivity. Modern semiconductor designs have narrower and more resistive wires, thereby shifting the performance bottleneck to interconnect delay. These trends considerably impact timing closure and call for improvements in high-performance physical design tools to keep pace with the current state of IC innovation. As leading-edge designs may incorporate tens of millions of gates, algorithm and software scalability are crucial to achieving reasonable turnaround time. Moreover, with decreasing device sizes, optimizing traditional objectives is no longer sufficient. Our research focuses on (i) expanding the capabilities of standalone global routing, (ii) extending global routing for use in different design applications, and (iii) integrating routing within broader physical design optimizations and flows, e.g., congestion-driven placement. Our first global router relies on integer-linear programming (ILP), and can solve fairly large problem instances to optimality. Our second iterative global router relies on Lagrangian relaxation, where we relax the routing violation constraints to allowing routing overflow at a penalty. In both approaches, our desire is to give the router the maximum degree of freedom within a specified context. Empirically, both routers produce competitive results within a reasonable amount of runtime. To improve routability, we explore the incorporation of routing with placement, where the router estimates congestion and feeds this information to the placer. In turn, the emphasis on runtime is heightened, as the router will be invoked multiple times. Empirically, our placement-and-route framework significantly improves the final solution’s routability than performing the steps sequentially. To further enhance routability-driven placement, we (i) leverage incrementality to generate fast and accurate congestion maps, and (ii) develop several techniques to relieve cell-based and layout-based congestion. To broaden the scope of routing, we integrate a global router in a chip-design flow that addresses the buffer explosion problem.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98025/1/jinhu_1.pd

    Hardware/Software Co-design for Multicore Architectures

    Get PDF
    Siirretty Doriast

    Smart vision in system-on-chip applications

    Get PDF
    In the last decade the ability to design and manufacture integrated circuits with higher transistor densities has led to the integration of complete systems on a single silicon die. These are commonly referred to as System-on-Chip (SoC). As SoCs processes can incorporate multiple technologies it is now feasible to produce single chip camera systems with embedded image processing, known as Imager-on-Chips (IoC). The development of IoCs is complicated due to the mixture of digital and analog components and the high cost of prototyping these designs using silicon processes. There are currently no re-usable prototyping platforms that specifically address the needs of IoC development. This thesis details a new prototyping platform specifically for use in the development of low-cost mass-market IoC applications. FPGA technology was utilised to implement a frame-based processing architecture suitable for supporting a range of real-time imaging and machine vision applications. To demonstrate the effectiveness of the prototyping platform, an example object counting and highlighting application was developed and functionally verified in real-time. A high-level IoC cost model was formulated to calculate the cost of manufacturing prototyped applications as a single IoC. This highlighted the requirement for careful analysis of optical issues, embedded imager array size and the silicon process used to ensure the desired IoC unit cost was achieved. A modified version of the FPGA architecture, which would result in improving the DSP performance, is also proposed

    Online learning on the programmable dataplane

    Get PDF
    This thesis makes the case for managing computer networks with datadriven methods automated statistical inference and control based on measurement data and runtime observations—and argues for their tight integration with programmable dataplane hardware to make management decisions faster and from more precise data. Optimisation, defence, and measurement of networked infrastructure are each challenging tasks in their own right, which are currently dominated by the use of hand-crafted heuristic methods. These become harder to reason about and deploy as networks scale in rates and number of forwarding elements, but their design requires expert knowledge and care around unexpected protocol interactions. This makes tailored, per-deployment or -workload solutions infeasible to develop. Recent advances in machine learning offer capable function approximation and closed-loop control which suit many of these tasks. New, programmable dataplane hardware enables more agility in the network— runtime reprogrammability, precise traffic measurement, and low latency on-path processing. The synthesis of these two developments allows complex decisions to be made on previously unusable state, and made quicker by offloading inference to the network. To justify this argument, I advance the state of the art in data-driven defence of networks, novel dataplane-friendly online reinforcement learning algorithms, and in-network data reduction to allow classification of switchscale data. Each requires co-design aware of the network, and of the failure modes of systems and carried traffic. To make online learning possible in the dataplane, I use fixed-point arithmetic and modify classical (non-neural) approaches to take advantage of the SmartNIC compute model and make use of rich device local state. I show that data-driven solutions still require great care to correctly design, but with the right domain expertise they can improve on pathological cases in DDoS defence, such as protecting legitimate UDP traffic. In-network aggregation to histograms is shown to enable accurate classification from fine temporal effects, and allows hosts to scale such classification to far larger flow counts and traffic volume. Moving reinforcement learning to the dataplane is shown to offer substantial benefits to stateaction latency and online learning throughput versus host machines; allowing policies to react faster to fine-grained network events. The dataplane environment is key in making reactive online learning feasible—to port further algorithms and learnt functions, I collate and analyse the strengths of current and future hardware designs, as well as individual algorithms

    Iowa State University, Courses and Programs Catalog 2014–2015

    Get PDF
    The Iowa State University Catalog is a one-year publication which lists all academic policies, and procedures. The catalog also includes the following: information for fees; curriculum requirements; first-year courses of study for over 100 undergraduate majors; course descriptions for nearly 5000 undergraduate and graduate courses; and a listing of faculty members at Iowa State University.https://lib.dr.iastate.edu/catalog/1025/thumbnail.jp
    corecore