940 research outputs found

    Sampling from a system-theoretic viewpoint

    Get PDF
    This paper studies a system-theoretic approach to the problem of reconstructing an analog signal from its samples. The idea, borrowed from earlier treatments in the control literature, is to address the problem as a hybrid model-matching problem in which performance is measured by system norms. \ud \ud The paper is split into three parts. In Part I we present the paradigm and revise the lifting technique, which is our main technical tool. In Part II optimal samplers and holds are designed for various analog signal reconstruction problems. In some cases one component is fixed while the remaining are designed, in other cases all three components are designed simultaneously. No causality requirements are imposed in Part II, which allows to use frequency domain arguments, in particular the lifted frequency response as introduced in Part I. In Part III the main emphasis is placed on a systematic incorporation of causality constraints into the optimal design of reconstructors. We consider reconstruction problems, in which the sampling (acquisition) device is given and the performance is measured by the L2L^2-norm of the reconstruction error. The problem is solved under the constraint that the optimal reconstructor is ll-causal for a given l0,l\geq 0, i.e., that its impulse response is zero in the time interval (,lh),(-\infty,-l h), where hh is the sampling period. We derive a closed-form state-space solution of the problem, which is based on the spectral factorization of a rational transfer function

    The Surface Laplacian Technique in EEG: Theory and Methods

    Full text link
    This paper reviews the method of surface Laplacian differentiation to study EEG. We focus on topics that are helpful for a clear understanding of the underlying concepts and its efficient implementation, which is especially important for EEG researchers unfamiliar with the technique. The popular methods of finite difference and splines are reviewed in detail. The former has the advantage of simplicity and low computational cost, but its estimates are prone to a variety of errors due to discretization. The latter eliminates all issues related to discretization and incorporates a regularization mechanism to reduce spatial noise, but at the cost of increasing mathematical and computational complexity. These and several others issues deserving further development are highlighted, some of which we address to the extent possible. Here we develop a set of discrete approximations for Laplacian estimates at peripheral electrodes and a possible solution to the problem of multiple-frame regularization. We also provide the mathematical details of finite difference approximations that are missing in the literature, and discuss the problem of computational performance, which is particularly important in the context of EEG splines where data sets can be very large. Along this line, the matrix representation of the surface Laplacian operator is carefully discussed and some figures are given illustrating the advantages of this approach. In the final remarks, we briefly sketch a possible way to incorporate finite-size electrodes into Laplacian estimates that could guide further developments.Comment: 43 pages, 8 figure

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    A Review of EMG Techniques for Detection of Gait Disorders

    Get PDF
    Electromyography (EMG) is a commonly used technique to record myoelectric signals, i.e., motor neuron signals that originate from the central nervous system (CNS) and synergistically activate groups of muscles resulting in movement. EMG patterns underlying movement, recorded using surface or needle electrodes, can be used to detect movement and gait abnormalities. In this review article, we examine EMG signal processing techniques that have been applied for diagnosing gait disorders. These techniques span from traditional statistical tests to complex machine learning algorithms. We particularly emphasize those techniques are promising for clinical applications. This study is pertinent to both medical and engineering research communities and is potentially helpful in advancing diagnostics and designing rehabilitation devices

    Signal and image processing methods for imaging mass spectrometry data

    Get PDF
    Imaging mass spectrometry (IMS) has evolved as an analytical tool for many biomedical applications. This thesis focuses on algorithms for the analysis of IMS data produced by matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. IMS provides mass spectra acquired at a grid of spatial points that can be represented as hyperspectral data or a so-called datacube. Analysis of this large and complex data requires efficient computational methods for matrix factorization and for spatial segmentation. In this thesis, state of the art processing methods are reviewed, compared and improved versions are proposed. Mathematical models for peak shapes are reviewed and evaluated. A simulation model for MALDI-TOF is studied, expanded and developed into a simulator for 2D or 3D MALDI-TOF-IMS data. The simulation approach paves way to statistical evaluation of algorithms for analysis of IMS data by providing a gold standard dataset. [...

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure
    corecore