41 research outputs found

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead

    Get PDF
    Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning (DL) is already present in many applications ranging from computer vision for medicine to autonomous driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve impressive performance, these algorithms employ very deep networks, requiring a significant computational power, both during the training and inference time. A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute-and energy-hungry. In a scenario where several sophisticated algorithms need to be executed with limited energy and low latency, the need for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance designs. This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper discusses some of the important security issues that these DNN and SNN models may have during their execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of different networks and hardware systems designed for them

    Algorithm and Hardware Co-design for Learning On-a-chip

    Get PDF
    abstract: Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design and optimization of both hardware and algorithm. For machine learning acceleration, traditional SRAM and DRAM based system suffer from low capacity, high latency, and high standby power. Instead, emerging memories, such as Phase Change Random Access Memory (PRAM), Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM), and Resistive Random Access Memory (RRAM), are promising candidates providing low standby power, high data density, fast access and excellent scalability. This dissertation proposes a hierarchical memory modeling framework and models PRAM and STT-MRAM in four different levels of abstraction. With the proposed models, various simulations are conducted to investigate the performance, optimization, variability, reliability, and scalability. Emerging memory devices such as RRAM can work as a 2-D crosspoint array to speed up the multiplication and accumulation in machine learning algorithms. This dissertation proposes a new parallel programming scheme to achieve in-memory learning with RRAM crosspoint array. The programming circuitry is designed and simulated in TSMC 65nm technology showing 900X speedup for the dictionary learning task compared to the CPU performance. From the algorithm perspective, inspired by the high accuracy and low power of the brain, this dissertation proposes a bio-plausible feedforward inhibition spiking neural network with Spike-Rate-Dependent-Plasticity (SRDP) learning rule. It achieves more than 95% accuracy on the MNIST dataset, which is comparable to the sparse coding algorithm, but requires far fewer number of computations. The role of inhibition in this network is systematically studied and shown to improve the hardware efficiency in learning.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications

    Get PDF
    With the advent of dedicated Deep Learning (DL) accelerators and neuromorphic processors, new opportunities are emerging for applying deep and Spiking Neural Network (SNN) algorithms to healthcare and biomedical applications at the edge. This can facilitate the advancement of the medical Internet of Things (IoT) systems and Point of Care (PoC) devices. In this paper, we provide a tutorial describing how various technologies ranging from emerging memristive devices, to established Field Programmable Gate Arrays (FPGAs), and mature Complementary Metal Oxide Semiconductor (CMOS) technology can be used to develop efficient DL accelerators to solve a wide variety of diagnostic, pattern recognition, and signal processing problems in healthcare. Furthermore, we explore how spiking neuromorphic processors can complement their DL counterparts for processing biomedical signals. After providing the required background, we unify the sparsely distributed research on neural network and neuromorphic hardware implementations as applied to the healthcare domain. In addition, we benchmark various hardware platforms by performing a biomedical electromyography (EMG) signal processing task and drawing comparisons among them in terms of inference delay and energy. Finally, we provide our analysis of the field and share a perspective on the advantages, disadvantages, challenges, and opportunities that different accelerators and neuromorphic processors introduce to healthcare and biomedical domains. This paper can serve a large audience, ranging from nanoelectronics researchers, to biomedical and healthcare practitioners in grasping the fundamental interplay between hardware, algorithms, and clinical adoption of these tools, as we shed light on the future of deep networks and spiking neuromorphic processing systems as proponents for driving biomedical circuits and systems forward.Comment: Submitted to IEEE Transactions on Biomedical Circuits and Systems (21 pages, 10 figures, 5 tables

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators
    corecore