36 research outputs found

    Limited resource visualization with region-of-interest

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Progressive transmission and rendering of foveated volume data

    Get PDF
    Master'sMASTER OF SCIENC

    Off-line Foveated Compression and Scene Perception: An Eye-Tracking Approach

    Get PDF
    With the continued growth of digital services offering storage and communication of pictorial information, the need to efficiently represent this information has become increasingly important, both from an information theoretic and a perceptual point of view. There has been a recent interest to design systems for efficient representation and compression of image and video data that take the features of the human visual system into account. One part of this thesis investigates whether knowledge about viewers' gaze positions as measured by an eye-tracker can be used to improve compression efficiency of digital video; regions not directly looked at by a number of previewers are lowpass filtered. This type of video manipulation is called off-line foveation. The amount of compression due to off-line foveation is assessed along with how it affects new viewers' gazing behavior as well as subjective quality. We found additional bitrate savings up to 50% (average 20%) due to off-line foveation prior to compression, without decreasing the subjective quality. In off-line foveation, it would be of great benefit to algorithmically predict where viewers look without having to perform eye-tracking measurements. In the first part of this thesis, new experimental paradigms combined with eye-tracking are used to understand the mechanisms behind gaze control during scene perception, thus investigating the prerequisites for such algorithms. Eye-movements are recorded from observers viewing contrast manipulated images depicting natural scenes under a neutral task. We report that image semantics, rather than the physical image content itself, largely dictates where people choose to look. Together with recent work on gaze prediction in video, the results in this thesis give only moderate support for successful applicability of algorithmic gaze prediction for off-line foveated video compression

    Foveated Path Tracing with Fast Reconstruction and Efficient Sample Distribution

    Get PDF
    Polunseuranta on tietokonegrafiikan piirtotekniikka, jota on käytetty pääasiassa ei-reaaliaikaisen realistisen piirron tekemiseen. Polunseuranta tukee luonnostaan monia muilla tekniikoilla vaikeasti saavutettavia todellisen valon ilmiöitä kuten heijastuksia ja taittumista. Reaaliaikainen polunseuranta on hankalaa polunseurannan suuren laskentavaatimuksen takia. Siksi nykyiset reaaliaikaiset polunseurantasysteemi tuottavat erittäin kohinaisia kuvia, jotka tyypillisesti suodatetaan jälkikäsittelykohinanpoisto-suodattimilla. Erittäin immersiivisiä käyttäjäkokemuksia voitaisiin luoda polunseurannalla, joka täyttäisi laajennetun todellisuuden vaatimukset suuresta resoluutiosta riittävän matalassa vasteajassa. Yksi mahdollinen ratkaisu näiden vaatimusten täyttämiseen voisi olla katsekeskeinen polunseuranta, jossa piirron resoluutiota vähennetään katseen reunoilla. Tämän johdosta piirron laatu on katseen reunoilla sekä harvaa että kohinaista, mikä asettaa suuren roolin lopullisen kuvan koostavalle suodattimelle. Tässä työssä esitellään ensimmäinen reaaliajassa toimiva regressionsuodatin. Suodatin on suunniteltu kohinaisille kuville, joissa on yksi polunseurantanäyte pikseliä kohden. Nopea suoritus saavutetaan tiileissä käsittelemällä ja nopealla sovituksen toteutuksella. Lisäksi työssä esitellään Visual-Polar koordinaattiavaruus, joka jakaa polunseurantanäytteet siten, että niiden jakauma seuraa silmän herkkyysmallia. Visual-Polar-avaruuden etu muihin tekniikoiden nähden on että se vähentää työmäärää sekä polunseurannassa että suotimessa. Nämä tekniikat esittelevät toimivan prototyypin katsekeskeisestä polunseurannasta, ja saattavat toimia tienraivaajina laajamittaiselle realistisen reaaliaikaisen polunseurannan käyttöönotolle.Photo-realistic offline rendering is currently done with path tracing, because it naturally produces many real-life light effects such as reflections, refractions and caustics. These effects are hard to achieve with other rendering techniques. However, path tracing in real time is complicated due to its high computational demand. Therefore, current real-time path tracing systems can only generate very noisy estimate of the final frame, which is then denoised with a post-processing reconstruction filter. A path tracing-based rendering system capable of filling the high resolution in the low latency requirements of mixed reality devices would generate a very immersive user experience. One possible solution for fulfilling these requirements could be foveated path tracing, wherein the rendering resolution is reduced in the periphery of the human visual system. The key challenge is that the foveated path tracing in the periphery is both sparse and noisy, placing high demands on the reconstruction filter. This thesis proposes the first regression-based reconstruction filter for path tracing that runs in real time. The filter is designed for highly noisy one sample per pixel inputs. The fast execution is accomplished with blockwise processing and fast implementation of the regression. In addition, a novel Visual-Polar coordinate space which distributes the samples according to the contrast sensitivity model of the human visual system is proposed. The specialty of Visual-Polar space is that it reduces both path tracing and reconstruction work because both of them can be done with smaller resolution. These techniques enable a working prototype of a foveated path tracing system and may work as a stepping stone towards wider commercial adoption of photo-realistic real-time path tracing

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Fast and interactive ray-based rendering

    Get PDF
    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University LondonDespite their age, ray-based rendering methods are still a very active field of research with many challenges when it comes to interactive visualization. In this thesis, we present our work on Guided High-Quality Rendering, Foveated Ray Tracing for Head Mounted Displays and Hash-based Hierarchical Caching and Layered Filtering. Our system for Guided High-Quality Rendering allows for guiding the sampling rate of ray-based rendering methods by a user-specified Region of Interest (RoI). We propose two interaction methods for setting such an RoI when using a large display system and a desktop display, respectively. This makes it possible to compute images with a heterogeneous sample distribution across the image plane. Using such a non-uniform sample distribution, the rendering performance inside the RoI can be significantly improved in order to judge specific image features. However, a modified scheduling method is required to achieve sufficient performance. To solve this issue, we developed a scheduling method based on sparse matrix compression, which has shown significant improvements in our benchmarks. By filtering the sparsely sampled image appropriately, large brightness variations in areas outside the RoI are avoided and the overall image brightness is similar to the ground truth early in the rendering process. When using ray-based methods in a VR environment on head-mounted display de vices, it is crucial to provide sufficient frame rates in order to reduce motion sickness. This is a challenging task when moving through highly complex environments and the full image has to be rendered for each frame. With our foveated rendering sys tem, we provide a perception-based method for adjusting the sample density to the user’s gaze, measured with an eye tracker integrated into the HMD. In order to avoid disturbances through visual artifacts from low sampling rates, we introduce a reprojection-based rendering pipeline that allows for fast rendering and temporal accumulation of the sparsely placed samples. In our user study, we analyse the im pact our system has on visual quality. We then take a closer look at the recorded eye tracking data in order to determine tracking accuracy and connections between different fixation modes and perceived quality, leading to surprising insights. For previewing global illumination of a scene interactively by allowing for free scene exploration, we present a hash-based caching system. Building upon the concept of linkless octrees, which allow for constant-time queries of spatial data, our frame work is suited for rendering such previews of static scenes. Non-diffuse surfaces are supported by our hybrid reconstruction approach that allows for the visualization of view-dependent effects. In addition to our caching and reconstruction technique, we introduce a novel layered filtering framework, acting as a hybrid method between path space and image space filtering, that allows for the high-quality denoising of non-diffuse materials. Also, being designed as a framework instead of a concrete filtering method, it is possible to adapt most available denoising methods to our layered approach instead of relying only on the filtering of primary hitpoints

    A Modular and Open-Source Framework for Virtual Reality Visualisation and Interaction in Bioimaging

    Get PDF
    Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. The advent of new imaging technologies, such as lightsheet microscopy, has resulted in the users being confronted with an ever-growing amount of data, with even terabytes of imaging data created within a day. With the possibility of gentler and more high-performance imaging, the spatiotemporal complexity of the model systems or processes of interest is increasing as well. Visualisation is often the first step in making sense of this data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualisations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we present scenery, a modular and extensible visualisation framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features, and discuss its use with VR/AR hardware and in distributed rendering. In addition to the visualisation framework, we present a series of case studies, where scenery can provide tangible benefit in developmental and systems biology: With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential to speed up manual tracking tasks by an order of magnitude. We further introduce ideas to move towards virtual reality-based laser ablation and perform a user study in order to gain insight into performance, acceptance and issues when performing ablation tasks with virtual reality hardware in fast developing specimen. To tame the amount of data originating from state-of-the-art volumetric microscopes, we present ideas how to render the highly-efficient Adaptive Particle Representation, and finally, we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to a wider audience.:Abstract Foreword and Acknowledgements Overview and Contributions Part 1 - Introduction 1 Fluorescence Microscopy 2 Introduction to Visual Processing 3 A Short Introduction to Cross Reality 4 Eye Tracking and Gaze-based Interaction Part 2 - VR and AR for System Biology 5 scenery — VR/AR for Systems Biology 6 Rendering 7 Input Handling and Integration of External Hardware 8 Distributed Rendering 9 Miscellaneous Subsystems 10 Future Development Directions Part III - Case Studies C A S E S T U D I E S 11 Bionic Tracking: Using Eye Tracking for Cell Tracking 12 Towards Interactive Virtual Reality Laser Ablation 13 Rendering the Adaptive Particle Representation 14 sciview — Integrating scenery into ImageJ2 & Fiji Part IV - Conclusion 15 Conclusions and Outlook Backmatter & Appendices A Questionnaire for VR Ablation User Study B Full Correlations in VR Ablation Questionnaire C Questionnaire for Bionic Tracking User Study List of Tables List of Figures Bibliography Selbstständigkeitserklärun
    corecore