3,191 research outputs found

    Acousto-optic systems for advanced microscopy

    Full text link
    Acoustic waves in an optical medium cause rapid periodic changes in the refraction index, leading to diffraction effects. Such acoustically controlled diffraction can be used to modulate, deflect, and focus light at microsecond timescales, paving the way for advanced optical microscopy designs that feature unprecedented spatiotemporal resolution. In this article, we review the operational principles, optical properties, and recent applications of acousto-optic (AO) systems for advanced microscopy, including random-access scanning, ultrafast confocal and multiphoton imaging, and fast inertia-free light-sheet microscopy. As AO technology is reaching maturity, designing new microscope architectures that utilize AO elements is more attractive than ever, providing new exciting opportunities in fields as impactful as optical metrology, neuroscience, embryogenesis, and high-content screening

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Satellite on-board processing for earth resources data

    Get PDF
    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented

    Postmortem iris recognition and its application in human identification

    Full text link
    Iris recognition is a validated and non-invasive human identification technology currently implemented for the purposes of surveillance and security (i.e. border control, schools, military). Similar to deoxyribonucleic acid (DNA), irises are a highly individualizing component of the human body. Based on a lack of genetic penetrance, irises are unique between an individual’s left and right iris and between identical twins, proving to be more individualizing than DNA. At this time, little to no research has been conducted on the use of postmortem iris scanning as a biometric measurement of identification. The purpose of this pilot study is to explore the use of iris recognition as a tool for postmortem identification. Objectives of the study include determining whether current iris recognition technology can locate and detect iris codes in postmortem globes, and if iris scans collected at different postmortem time intervals can be identified as the same iris initially enrolled. Data from 43 decedents involving 148 subsequent iris scans demonstrated a subsequent match rate of approximately 80%, supporting the theory that iris recognition technology is capable of detecting and identifying an individual’s iris code in a postmortem setting. A chi-square test of independence showed no significant difference between match outcomes and the globe scanned (left vs. right), and gender had no bearing on the match outcome. There was a significant relationship between iris color and match outcome, with blue/gray eyes yielding a lower match rate (59%) compared to brown (82%) or green/hazel eyes (88%), however, the sample size of blue/gray eyes in this study was not large enough to draw a meaningful conclusion. An isolated case involving an antemortem initial scan collected from an individual on life support yielded an accurate identification (match) with a subsequent scan captured at approximately 10 hours postmortem. Falsely rejected subsequent iris scans or "no match" results occurred in about 20% of scans; they were observed at each PMI range and varied from 19-30%. The false reject rate is too high to reliably establish non-identity when used alone and ideally would be significantly lower prior to implementation in a forensic setting; however, a "no match" could be confirmed using another method. Importantly, the data showed a false match rate or false accept rate (FAR) of zero, a result consistent with previous iris recognition studies in living individuals. The preliminary results of this pilot study demonstrate a plausible role for iris recognition in postmortem human identification. Implementation of a universal iris recognition database would benefit the medicolegal death investigation and forensic pathology communities, and has potential applications to other situations such as missing persons and human trafficking cases

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's
    corecore