922 research outputs found

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Comparative analysis of various Image compression techniques for Quasi Fractal lossless compression

    Get PDF
    The most important Entity to be considered in Image Compression methods are Paek to signal noise ratio and Compression ratio. These two parameters are considered to judge the quality of any Image.and they a play vital role in any Image processing applications. Biomedical domain is one of the critical areas where more image datasets are involved for analysis and biomedical image compression is very, much essential. Basically, compression techniques are classified into lossless and lossy. As the name indicates, in the lossless technique the image is compressed without any loss of data. But in the lossy, some information may loss. Here both lossy & lossless techniques for an image compression are used. In this research different compression approaches of these two categories are discussed and brain images for compression techniques are highlighted. Both lossy and lossless techniques are implemented by studying it’s advantages and disadvantages. For this research two important quality parameters i.e. CR & PSNR are calculated. Here existing techniques DCT, DFT, DWT & Fractal are implemented and introduced new techniques i.e Oscillation Concept method, BTC-SPIHT & Hybrid technique using adaptive threshold & Quasi Fractal Algorithm

    Fast Search Approaches for Fractal Image Coding: Review of Contemporary Literature

    Get PDF
    Fractal Image Compression FIC as a model was conceptualized in the 1989 In furtherance there are numerous models that has been developed in the process Existence of fractals were initially observed and depicted in the Iterated Function System IFS and the IFS solutions were used for encoding images The process of IFS pertaining to any image constitutes much lesser space for recording than the actual image which has led to the development of representation the image using IFS form and how the image compression systems has taken shape It is very important that the time consumed for encoding has to be addressed for achieving optimal compression conditions and predominantly the inputs that are shared in the solutions proposed in the study depict the fact that despite of certain developments that has taken place still there are potential chances of scope for improvement From the review of exhaustive range of models that are depicted in the model it is evident that over period of time numerous advancements have taken place in the FCI model and is adapted at image compression in varied levels This study focus on the existing range of literature on FCI and the insights of various models has been depicted in this stud

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    A Three-Level Hierarchical Encoder Using Shape Independent Transform

    Get PDF
    In this paper a scheme for utilizing shape independent basis functions for a hierarchical multiresolution image compression is shown. First, an image is segmented and its segments\' boundaries are polygon approximated, thus achieving an image mask. Second, this image mask and the image are used as an input of a three-level hierarchical encoder. The hierarchical encoder subsamples the image and the image mask and encodes them shape independently; it produces an output bit stream on a respective level that is also used on lower level(s) for further coding. On the base level a triangulation of the image mask is performed for superior performance. Another compression mode is, hence, introduced for the shape independent transform coding

    ICA based algorithms for computing optimal 1-D linear block transforms in variable high-rate source coding

    No full text
    International audienceThe Karhunen-Loève Transform (KLT) is optimal for transform coding of Gaussian sources, however, it is not optimal, in general, for non-Gaussian sources. Furthermore, under the high-resolution quantization hypothesis, nearly everything is known about the performance of a transform coding system with entropy constrained scalar quantization and mean-square distortion. It is then straightforward to find a criterion that, when minimized, gives the optimal linear transform under the abovementioned conditions. However, the optimal transform computation is generally considered as a difficult task and the Gaussian assumption is then used in order to simplify the calculus. In this paper, we present the abovementioned criterion as a contrast of independent component analysis modified by an additional term which is a penalty to non-orthogonality. Then we adapt the icainf algorithm by Pham in order to compute the transform minimizing the criterion either with no constraint or with the orthogonality constraint. Finally, experimental results show that the transforms we introduced can (1) outperform the KLT on synthetic signals, (2) achieve slightly better PSNR for high-rates and better visual quality (preservation of lines and contours) for medium-to-low rates than the KLT and 2-D DCT on grayscale natural images

    Transformées basées graphes pour la compression de nouvelles modalités d’image

    Get PDF
    Due to the large availability of new camera types capturing extra geometrical information, as well as the emergence of new image modalities such as light fields and omni-directional images, a huge amount of high dimensional data has to be stored and delivered. The ever growing streaming and storage requirements of these new image modalities require novel image coding tools that exploit the complex structure of those data. This thesis aims at exploring novel graph based approaches for adapting traditional image transform coding techniques to the emerging data types where the sampled information are lying on irregular structures. In a first contribution, novel local graph based transforms are designed for light field compact representations. By leveraging a careful design of local transform supports and a local basis functions optimization procedure, significant improvements in terms of energy compaction can be obtained. Nevertheless, the locality of the supports did not permit to exploit long term dependencies of the signal. This led to a second contribution where different sampling strategies are investigated. Coupled with novel prediction methods, they led to very prominent results for quasi-lossless compression of light fields. The third part of the thesis focuses on the definition of rate-distortion optimized sub-graphs for the coding of omni-directional content. If we move further and give more degree of freedom to the graphs we wish to use, we can learn or define a model (set of weights on the edges) that might not be entirely reliable for transform design. The last part of the thesis is dedicated to theoretically analyze the effect of the uncertainty on the efficiency of the graph transforms.En raison de la grande disponibilité de nouveaux types de caméras capturant des informations géométriques supplémentaires, ainsi que de l'émergence de nouvelles modalités d'image telles que les champs de lumière et les images omnidirectionnelles, il est nécessaire de stocker et de diffuser une quantité énorme de hautes dimensions. Les exigences croissantes en matière de streaming et de stockage de ces nouvelles modalités d’image nécessitent de nouveaux outils de codage d’images exploitant la structure complexe de ces données. Cette thèse a pour but d'explorer de nouvelles approches basées sur les graphes pour adapter les techniques de codage de transformées d'image aux types de données émergents où les informations échantillonnées reposent sur des structures irrégulières. Dans une première contribution, de nouvelles transformées basées sur des graphes locaux sont conçues pour des représentations compactes des champs de lumière. En tirant parti d’une conception minutieuse des supports de transformées locaux et d’une procédure d’optimisation locale des fonctions de base , il est possible d’améliorer considérablement le compaction d'énergie. Néanmoins, la localisation des supports ne permettait pas d'exploiter les dépendances à long terme du signal. Cela a conduit à une deuxième contribution où différentes stratégies d'échantillonnage sont étudiées. Couplés à de nouvelles méthodes de prédiction, ils ont conduit à des résultats très importants en ce qui concerne la compression quasi sans perte de champs de lumière statiques. La troisième partie de la thèse porte sur la définition de sous-graphes optimisés en distorsion de débit pour le codage de contenu omnidirectionnel. Si nous allons plus loin et donnons plus de liberté aux graphes que nous souhaitons utiliser, nous pouvons apprendre ou définir un modèle (ensemble de poids sur les arêtes) qui pourrait ne pas être entièrement fiable pour la conception de transformées. La dernière partie de la thèse est consacrée à l'analyse théorique de l'effet de l'incertitude sur l'efficacité des transformées basées graphes
    • …
    corecore