128 research outputs found

    Self-concordant Smoothing for Convex Composite Optimization

    Full text link
    We introduce the notion of self-concordant smoothing for minimizing the sum of two convex functions: the first is smooth and the second may be nonsmooth. Our framework results naturally from the smoothing approximation technique referred to as partial smoothing in which only a part of the nonsmooth function is smoothed. The key highlight of our approach is in a natural property of the resulting problem's structure which provides us with a variable-metric selection method and a step-length selection rule particularly suitable for proximal Newton-type algorithms. In addition, we efficiently handle specific structures promoted by the nonsmooth function, such as β„“1\ell_1-regularization and group-lasso penalties. We prove local quadratic convergence rates for two resulting algorithms: Prox-N-SCORE, a proximal Newton algorithm and Prox-GGN-SCORE, a proximal generalized Gauss-Newton (GGN) algorithm. The Prox-GGN-SCORE algorithm highlights an important approximation procedure which helps to significantly reduce most of the computational overhead associated with the inverse Hessian. This approximation is essentially useful for overparameterized machine learning models and in the mini-batch settings. Numerical examples on both synthetic and real datasets demonstrate the efficiency of our approach and its superiority over existing approaches.Comment: 37 pages, 7 figures, 3 table

    Convex Optimization for Big Data

    Get PDF
    This article reviews recent advances in convex optimization algorithms for Big Data, which aim to reduce the computational, storage, and communications bottlenecks. We provide an overview of this emerging field, describe contemporary approximation techniques like first-order methods and randomization for scalability, and survey the important role of parallel and distributed computation. The new Big Data algorithms are based on surprisingly simple principles and attain staggering accelerations even on classical problems.Comment: 23 pages, 4 figurs, 8 algorithm

    Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences

    Get PDF
    Many natural and man-made signals can be described as having a few degrees of freedom relative to their size due to natural parameterizations or constraints; examples include bandlimited signals, collections of signals observed from multiple viewpoints in a network-of-sensors, and per-flow traffic measurements of the Internet. Low-dimensional models (LDMs) mathematically capture the inherent structure of such signals via combinatorial and geometric data models, such as sparsity, unions-of-subspaces, low-rankness, manifolds, and mixtures of factor analyzers, and are emerging to revolutionize the way we treat inverse problems (e.g., signal recovery, parameter estimation, or structure learning) from dimensionality-reduced or incomplete data. Assuming our problem resides in a LDM space, in this thesis we investigate how to integrate such models in convex and non-convex optimization algorithms for significant gains in computational complexity. We mostly focus on two LDMs: (i)(i) sparsity and (ii)(ii) low-rankness. We study trade-offs and their implications to develop efficient and provable optimization algorithms, and--more importantly--to exploit convex and combinatorial optimization that can enable cross-pollination of decades of research in both
    • …
    corecore