597 research outputs found

    Research on user recruitment algorithms based on user trajectory prediction with sparse mobile crowd sensing

    Get PDF
    Sparse mobile crowd sensing saves perception cost by recruiting a small number of users to perceive data from a small number of sub-regions, and then inferring data from the remaining sub-regions. The data collected by different people on their respective trajectories have different values, and we can select participants who can collect high-value data based on their trajectory predictions. In this paper, we study two aspects of user trajectory prediction and user recruitment. First, we propose an STGCN-GRU user trajectory prediction algorithm, which uses the STGCN algorithm to extract features related to temporal and spatial information from the trajectory map, and then inputs the feature sequences into GRU for trajectory prediction, and this algorithm improves the accuracy of user trajectory prediction. Second, an ADQN (action DQN) user recruitment algorithm is proposed.The ADQN algorithm improves the objective function in DQN on the idea of reinforcement learning. The action with the maximum input value is found from the Q network, and then the output value of the objective function of the corresponding action Q network is found. This reduces the overestimation problem that occurs in Q networks and improves the accuracy of user recruitment. The experimental results show that the evaluation metrics FDE and ADE of the STGCN-GRU algorithm proposed in this paper are better than other representative algorithms. And the experiments on two real datasets verify the effectiveness of the ADQN user selection algorithm, which can effectively improve the accuracy of data inference under budget constraints

    Truth Discovery in Crowdsourced Detection of Spatial Events

    Get PDF
    ACKNOWLEDGMENTS This research is based upon work supported in part by the US ARL and UK Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the US ARL, the US Government, the UK Ministry of Defense or the UK Government. The US and UK Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.Peer reviewedPostprin

    Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    Get PDF
    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN

    Emerging technologies to measure neighborhood conditions in public health: Implications for interventions and next steps

    Get PDF
    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Spatial crowdsourcing with mobile agents in vehicular networks

    Get PDF
    In the last years, the automotive industry has shown interest in the addition of computing and communication devices to cars, thanks to technological advances in these fields, in order to meet the increasing demand of “connected” applications and services. Although vehicular ad hoc networks (VANETs) have not been fully developed yet, they could be used in a near future as a means to provide a number of interesting applications and services that need the exchange of data among vehicles and other data sources. In this paper, we propose a spatial crowdsourcing schema for the opportunistic collection of information within an interest area in a city or region (e.g., measures about the environment, such as the concentration of certain gases in the atmosphere, or information such as the availability of parking spaces in an area), using vehicular ad hoc communications. We present a method that exploits mobile agent technology to accomplish the distributed collection and querying of data among vehicles in such a scenario. Our proposal is supported by an extensive set of realistic simulations that prove the feasibility of the approach

    Mobile crowd sensing: enabling technologies and applications

    Get PDF

    A Service Oriented Architecture Approach for Global Positioning System Quality of Service Monitoring

    Get PDF
    This research focuses on the development of a Service Oriented Architecture (SOA) for monitoring the Global Positioning System (GPS) Standard Positioning Service (SPS) in near real time utilizing a Mobile Crowd Sensing (MCS) technique. A unique approach to developing the MCS SOA was developed that utilized both the Depart- ment of Defense Architecture Framework (DoDAF) and the SOA Modeling Language (SoaML) guidance. The combination of these two frameworks resulted in generation of all the architecture products required to evaluate the SOA through the use of Model Based System Engineering (MBSE) techniques. Ultimately this research provides a feasibility analysis for utilization of mobile distributed sensors to provide situational awareness of the GPS Quality of Service (QoS). First this research provides justification for development of a new monitoring architecture and defines the scope of the SOA. Then an exploration of current SOA, MBSE, and Geospatial System Information (GIS) research was conducted. Next a Discrete Event Simulation (DES) of the MCS participant interactions was developed and simulated within AGI\u27s Systems Toolkit. The architecture performance analysis was executed using a GIS software package known as ArcMap. Finally, this research concludes with a suitability analysis of the proposed architecture for detecting sources of GPS interference within an Area of Interest (AoI)

    Seamless Interactions Between Humans and Mobility Systems

    Full text link
    As mobility systems, including vehicles and roadside infrastructure, enter a period of rapid and profound change, it is important to enhance interactions between people and mobility systems. Seamless human—mobility system interactions can promote widespread deployment of engaging applications, which are crucial for driving safety and efficiency. The ever-increasing penetration rate of ubiquitous computing devices, such as smartphones and wearable devices, can facilitate realization of this goal. Although researchers and developers have attempted to adapt ubiquitous sensors for mobility applications (e.g., navigation apps), these solutions often suffer from limited usability and can be risk-prone. The root causes of these limitations include the low sensing modality and limited computational power available in ubiquitous computing devices. We address these challenges by developing and demonstrating that novel sensing techniques and machine learning can be applied to extract essential, safety-critical information from drivers natural driving behavior, even actions as subtle as steering maneuvers (e.g., left-/righthand turns and lane changes). We first show how ubiquitous sensors can be used to detect steering maneuvers regardless of disturbances to sensing devices. Next, by focusing on turning maneuvers, we characterize drivers driving patterns using a quantifiable metric. Then, we demonstrate how microscopic analyses of crowdsourced ubiquitous sensory data can be used to infer critical macroscopic contextual information, such as risks present at road intersections. Finally, we use ubiquitous sensors to profile a driver’s behavioral patterns on a large scale; such sensors are found to be essential to the analysis and improvement of drivers driving behavior.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163127/1/chendy_1.pd
    • …
    corecore