9,042 research outputs found

    Fast Parametric Elastic Image Registration

    Get PDF
    We present an algorithm for fast elastic multidimensional intensity-based image registration with a parametric model of the deformation. It is fully automatic in its default mode of operation. In the case of hard real-world problems, it is capable of accepting expert hints in the form of soft landmark constraints. Much fewer landmarks are needed and the results are far superior compared to pure landmark registration. Particular attention has been paid to the factors influencing the speed of this algorithm. The B-spline deformation model is shown to be computationally more efficient than other alternatives. The algorithm has been successfully used for several two-dimensional (2-D) and three-dimensional (3-D) registration tasks in the medical domain, involving MRI, SPECT, CT, and ultrasound image modalities. We also present experiments in a controlled environment, permitting an exact evaluation of the registration accuracy. Test deformations are generated automatically using a random hierarchical fractional wavelet-based generator

    A novel variational model for image registration using Gaussian curvature

    Get PDF
    Image registration is one important task in many image processing applications. It aims to align two or more images so that useful information can be extracted through comparison, combination or superposition. This is achieved by constructing an optimal trans- formation which ensures that the template image becomes similar to a given reference image. Although many models exist, designing a model capable of modelling large and smooth deformation field continues to pose a challenge. This paper proposes a novel variational model for image registration using the Gaussian curvature as a regulariser. The model is motivated by the surface restoration work in geometric processing [Elsey and Esedoglu, Multiscale Model. Simul., (2009), pp. 1549-1573]. An effective numerical solver is provided for the model using an augmented Lagrangian method. Numerical experiments can show that the new model outperforms three competing models based on, respectively, a linear curvature [Fischer and Modersitzki, J. Math. Imaging Vis., (2003), pp. 81- 85], the mean curvature [Chumchob, Chen and Brito, Multiscale Model. Simul., (2011), pp. 89-128] and the diffeomorphic demon model [Vercauteren at al., NeuroImage, (2009), pp. 61-72] in terms of robustness and accuracy.Comment: 23 pages, 5 figures. Key words: Image registration, Non-parametric image registration, Regularisation, Gaussian curvature, surface mappin

    Direct inverse deformation field approach to pelvic-area symmetric image registration

    Get PDF
    This paper presents a novel technique for a consistent symmetric deformable image registration based on an accurate method for a direct inversion of a large motion model deformation field. The proposed image registration algorithm maintains one-to-one mapping between registered images by symmetrically warping them to another image. This makes the final estimation of forward and backward deformation fields anatomically plausible and applicable to adaptive prostate radiotherapy. The quantitative validation of the method is performed on magnetic resonance data obtained for pelvis area. The experiments demonstrate the improved robustness in terms of inverse consistency error and estimation accuracy of prostate position in comparison to the previously proposed methods

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D
    • …
    corecore