174 research outputs found

    Improving ball interception accuracy in an automated football table

    Get PDF

    Improved nonlinear filtering for target tracking.

    Get PDF
    The objective of this research is to develop robust and accurate tracking algorithms for various tracking applications. These tracking problems can be formulated as nonlinear filtering problems. The tracking algorithms will be developed based on an emerging promising nonlinear filter technique, known as sequential importance sampling (nick-name: particle filtering). This technique was introduced to the engineering community in the early years of 2000, and it has recently drawn significant attention from engineers and researchers in a wide range of areas. Despite the encouraging results reported in the current literature, there are still many open questions to be answered. For the first time, the major research effort will be focusing on making improvement to the particle filter based tracking algorithm in the following three aspects: (I) refining the particle filtering process by designing better proposal distributions (II) refining the dynamic model by using multiple-model method, (i.e. using switching dynamics and jump Markov process) and (III) refining system measurements by incorporating a data fusion stage for multiple measurement cues

    Bayesian Approaches to Tracking, Sensor Fusion and Intent Prediction

    Get PDF
    This thesis presents work on the development of model-based Bayesian approaches to object tracking and intent prediction. Successful navigation/positioning applications rely fundamentally on the choice of appropriate dynamic model and the design of effective tracking algorithms capable of maximising the use of the structure of the dynamic system and the information from sensors. While the tracking problem with frequent and accurate position data has been well studied, we push back the frontiers of current technology where an object can undergo fast manoeuvres and position fixes are limited. On the other hand, intent prediction techniques which extract higher level information such as the intended destination of a moving object can be designed, given the ability to perform successful tracking. Such techniques can play important roles in various application areas, including traffic monitoring, intelligent human computer interaction systems and autonomous route planning. In the first part of this thesis Bayesian tracking methods are designed based on a standard fix-rate setting in which the dynamic system is formulated into a Markovian state space form. We show that the combination of an intrinsic coordinate dynamic model and sensors in the object's body frame leads to novel state space models according to which efficient proposal kernels can be designed and implemented by the sequential Monte Carlo (SMC) methods. Also, sequential Markov chain Monte Carlo schemes are considered for the first time to tackle the sequential batch inference problems due to the presence of infrequent position data. Performance evaluation on both synthetic and real-world data shows that the proposed algorithms are superior to simpler particle filters, implying that they can be favourable alternatives to tracking problems with inertial sensors. The modelling assumption that leads to Markovian state space models can be restrictive for real-world systems as it stipulates that the state sequence has to be synchronised with the observations. In the second major part of this thesis we relax this assumption and work with a more natural class of models, termed variable rate models. We generalise the existing variable rate intrinsic model to incorporate acceleration, speed, distance and position data and introduce new variable rate particle filtering methods tailored to the derived model to accommodate multi-sensor multi-rate tracking scenarios. The proposed algorithms can achieve substantial improvements in terms of tracking accuracy and robustness over a bootstrap variable rate particle filter. Moreover, full Bayesian inference schemes for the learning of both the hidden state and system parameters are presented, with numerical results illustrating their effectiveness. The last part of the thesis is about designing efficient intent prediction algorithms within a Bayesian framework. A pseudo-observation based approach to the incorporation of destination knowledge is introduced, making the mathematics of the dynamical model and the observation process consistent with the Markov state process. Based on the new interpretation, two algorithms are proposed to sequentially estimate the probability of all possible endpoints. Whilst the synthetic maritime surveillance data demonstrate that the proposed methods can achieve comparable prediction performance with reduced computational cost in comparison to the existing bridging distribution based methods, the results on an extensive freehand pointing database, which contains 95 three-dimensional pointing trajectories, show that the new algorithms can outperform other state-of-the-art techniques. Some sensitivity tests are also performed, confirming the good robustness of the introduced methods against model mismatches

    Robust Multi-Object Tracking: A Labeled Random Finite Set Approach

    Get PDF
    The labeled random finite set based generalized multi-Bernoulli filter is a tractable analytic solution for the multi-object tracking problem. The robustness of this filter is dependent on certain knowledge regarding the multi-object system being available to the filter. This dissertation presents techniques for robust tracking, constructed upon the labeled random finite set framework, where complete information regarding the system is unavailable

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios
    • …
    corecore