39,511 research outputs found

    Multi-GPU Acceleration of Iterative X-ray CT Image Reconstruction

    Get PDF
    X-ray computed tomography is a widely used medical imaging modality for screening and diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by minimizing a cost function that models the physics and statistics of the data acquisition process in X-ray CT. SIR algorithms have superior performance compared to traditional analytical reconstructions for a wide range of applications including nonstandard geometries arising from irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the widespread adoption of SIR algorithms in multislice X-ray CT reconstruction problems is their slow convergence rate and associated computational time. We seek to design and develop fast parallel SIR algorithms for clinical X-ray CT scanners. Each of the following approaches is implemented on real clinical helical CT data acquired from a Siemens Sensation 16 scanner and compared to the straightforward implementation of the Alternating Minimization (AM) algorithm of O’Sullivan and Benac [1]. We parallelize the computationally expensive projection and backprojection operations by exploiting the massively parallel hardware architecture of 3 NVIDIA TITAN X Graphical Processing Unit (GPU) devices with CUDA programming tools and achieve an average speedup of 72X over a straightforward CPU implementation. We implement a multi-GPU based voxel-driven multislice analytical reconstruction algorithm called Feldkamp-Davis-Kress (FDK) [2] and achieve an average overall speedup of 1382X over the baseline CPU implementation by using 3 TITAN X GPUs. Moreover, we propose a novel adaptive surrogate-function based optimization scheme for the AM algorithm, resulting in more aggressive update steps in every iteration. On average, we double the convergence rate of our baseline AM algorithm and also improve image quality by using the adaptive surrogate function. We extend the multi-GPU and adaptive surrogate-function based acceleration techniques to dual-energy reconstruction problems as well. Furthermore, we design and develop a GPU-based deep Convolutional Neural Network (CNN) to denoise simulated low-dose X-ray CT images. Our experiments show significant improvements in the image quality with our proposed deep CNN-based algorithm against some widely used denoising techniques including Block Matching 3-D (BM3D) and Weighted Nuclear Norm Minimization (WNNM). Overall, we have developed novel fast, parallel, computationally efficient methods to perform multislice statistical reconstruction and image-based denoising on clinically-sized datasets

    Parallel CT image reconstruction based on GPUs

    Full text link
    [EN] In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data.Research supported by ANITRAN Project PROMETEO/2010/039.Flores, LA.; Vidal Gimeno, VE.; Mayo Nogueira, P.; Ródenas Escribá, FDA.; Verdú Martín, GJ. (2014). Parallel CT image reconstruction based on GPUs. Radiation Physics and Chemistry. 95(1):247-250. https://doi.org/10.1016 / j.radphyschem.2013.03.011S24725095

    Fast voxel line update for time-space image reconstruction

    Get PDF
    Recent applications of model-based iterative reconstruction(MBIR) algorithm to time-space Computed Tomography (CT) have shown that MBIR can greatly improve image quality by increasing resolution as well as reducing noise and some artifacts. Among the various iterative methods that have been studied for MBIR, iterative coordinate descent(ICD) has been found to have relatively low overall computational requirements due to its fast convergence. However, high computational cost and long reconstruction times remain as a barrier to the use of MBIR in practical applications. This disadvantage is especially prominent in time-space reconstruction because of the large volume of data. This thesis presents a new data structure, called VL-Buffer , for time-space reconstruction that significantly improves the cache locality while retaining good parallel performance. Experimental results show an average speedup of 40% using VL-Buffer

    High Performance Optical Computed Tomography for Accurate Three-Dimensional Radiation Dosimetry

    Get PDF
    Optical computed tomography (CT) imaging of radiochromic gel dosimeters is a method for truly three-dimensional radiation dosimetry. Although optical CT dosimetry is not widely used currently due to previous concerns with speed and accuracy, the complexity of modern radiotherapy is increasing the need for a true 3D dosimeter. This thesis reports technical improvements that bring the performance of optical CT to a clinically useful level. New scanner designs and improved scanning and reconstruction techniques are described. First, we designed and implemented a new light source for a cone-beam optical CT system which reduced the scatter to primary contribution in CT projection images of gel dosimeters from approximately 25% to approximately 4%. This design, which has been commercially implemented, enables accurate and fast dosimetry. Second, we designed and constructed a new, single-ray, single-detector parallel-beam optical CT scanner. This system was able to very accurately image both absorbing and scattering objects in large volumes (15 cm diameter), agreeing within ∼1% with independent measurements. It has become a reference standard for evaluation of optical CT geometries and dosimeter formulations. Third, we implemented and characterized an iterative reconstruction algorithm for optical CT imaging of gel dosimeters. This improved image quality in optical CT by suppressing the effects of noise and artifacts by a factor of up to 5. Fourth, we applied a fiducial-based ray path measurement scheme, combined with an iterative reconstruction algorithm, to enable optical CT reconstruction in the case of refractive index mismatch between different media in the scanner’s imaged volume. This improved the practicality of optical CT, as time-consuming mixing of liquids can be avoided. Finally, we applied the new laser scanner to the difficult dosimetry task of small-field measurement. We were able to obtain beam profiles and depth dose curves for 4 fields (3x3 cm2 and below) using one 15 cm diameter dosimeter, within 2 hours. Our gel dosimetry depth-dose curves agreed within ∼1.5% with Monte Carlo simulations. In conclusion, the developments reported here have brought optical CT dosimetry to a clinically useful level. Our techniques will be used to assist future research in gel dosimetry and radiotherapy treatment techniques

    Three-Dimensional Reconstruction Algorithm for a Reverse-Geometry Volumetric CT System With a Large-Array Scanned Source

    Get PDF
    We have proposed a CT system design to rapidly produce volumetric images with negligible cone beam artifacts. The investigated system uses a large array scanned source with a smaller array of fast detectors. The x-ray source is electronically steered across a 2D target every few milliseconds as the system rotates. The proposed reconstruction algorithm for this system is a modified 3D filtered backprojection method. The data are rebinned into 2D parallel ray projections, most of which are tilted with respect to the axis of rotation. Each projection is filtered with a 2D kernel and backprojected onto the desired image matrix. To ensure adequate spatial resolution and low artifact level, we rebin the data onto an array that has sufficiently fine spatial and angular sampling. Due to finite sampling in the real system, some of the rebinned projections will be sparse, but we hypothesize that the large number of views will compensate for the data missing in a particular view. Preliminary results using simulated data with the expected discrete sampling of the source and detector arrays suggest that high resolution

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio
    • …
    corecore