155 research outputs found

    Wireless communication technologies for the Internet of Things

    Get PDF
    Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication and Visible Light Communication in the Development of Smart Cities

    Get PDF
    The current social impact of new technologies has produced major changes in all areas of society, creating the concept of a smart city supported by an electronic infrastructure, telecommunications and information technology. This paper presents a review of Bluetooth Low Energy (BLE), Near Field Communication (NFC) and Visible Light Communication (VLC) and their use and influence within different areas of the development of the smart city. The document also presents a review of Big Data Solutions for the management of information and the extraction of knowledge in an environment where things are connected by an “Internet of Things” (IoT) network. Lastly, we present how these technologies can be combined together to benefit the development of the smart city

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    Autonomous Sensing Nodes for IoT Applications

    Get PDF
    The present doctoral thesis fits into the energy harvesting framework, presenting the development of low-power nodes compliant with the energy autonomy requirement, and sharing common technologies and architectures, but based on different energy sources and sensing mechanisms. The adopted approach is aimed at evaluating multiple aspects of the system in its entirety (i.e., the energy harvesting mechanism, the choice of the harvester, the study of the sensing process, the selection of the electronic devices for processing, acquisition and measurement, the electronic design, the microcontroller unit (MCU) programming techniques), accounting for very challenging constraints as the low amounts of harvested power (i.e., [μW, mW] range), the careful management of the available energy, the coexistence of sensing and radio transmitting features with ultra-low power requirements. Commercial sensors are mainly used to meet the cost-effectiveness and the large-scale reproducibility requirements, however also customized sensors for a specific application (soil moisture measurement), together with appropriate characterization and reading circuits, are also presented. Two different strategies have been pursued which led to the development of two types of sensor nodes, which are referred to as 'sensor tags' and 'self-sufficient sensor nodes'. The first term refers to completely passive sensor nodes without an on-board battery as storage element and which operate only in the presence of the energy source, provisioning energy from it. In this thesis, an RFID (Radio Frequency Identification) sensor tag for soil moisture monitoring powered by the impinging electromagnetic field is presented. The second term identifies sensor nodes equipped with a battery rechargeable through energy scavenging and working as a secondary reserve in case of absence of the primary energy source. In this thesis, quasi-real-time multi-purpose monitoring LoRaWAN nodes harvesting energy from thermoelectricity, diffused solar light, indoor white light, and artificial colored light are presented

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Communication technologies and data processing for safety

    Get PDF
    Emergency workers comprise large professional groups like volunteer fire-fighters, police officers, emergency medical staff and so on. Their professions have to deal frequently with a considerable number of a combination of health and safety risk factors, which are often unavoidable. For example, workplace scenes demanding the intervention of emergency workers may be located in remote, difficult to access areas (mountains, sea, caves), and sometimes in extremely difficult weather conditions. Moreover, emergency workers must arrive very rapidly at the disaster scene at any time of the day or night, and there is always the possibility of car crashes or other transportation accidents on the journey to the disaster scene or to hospitals. Others examples are the industrial workplaces, which are inherently places with a high concentration of heavy machinery, fast handling equipments, high heat and pressure pipes, polluted and explosive areas where people work in a relatively small area. Therefore, in an environment where situational awareness and tactical decision making are critical elements to a successful operation, it is really important to have available efficient instruments to ensure the safety for all operators that work in the field. Despite the fact that a lot sophisticated solutions have been used for increasing request due to the growing need of safety concerns by the operators, the mission-critical environments are still considered high-risk environments with serious work safety related issues and higher accident rates than in other workplaces. This study focuses on the safety precautions in outdoor and indoor environments, safety communication and Personal Protective Equipment (PPE) and proposes solutions to ensure secure and reliable communications between forces deployed in the field and their dispatch center, which is often of decisive importance for the work of the emergency services, analyzing two different important case studies. Moreover, we have designed a control system intended as a platform for real-time information capable of monitoring, by means of camera and sensor data harvesting about people and vehicles movements. It provides automatic and semi-automatic risk prevention measures thanks to the work in progress on designing and implementing a first working prototype of sensor network based on RFID BAN. These capabilities are the topic of a larger research project that aims to find the optimal solution in terms of feasibility and practical implementation. To conclude our study, we have developed a indoor navigation system for mobile devices. The application is able to follow the user and it indicates the shortest path to achieve a specific destination. It uses only smartphone motion sensor and not requires the use of extra equipment. Moreover, thanks to an algorithm widely explained afterwards and the use of the gyroscope sensor rather than the compass, the mobile application ensure a very good orientation. The thesis is organized as following: - In the first chapter, to design a radio communication system both for health emergency services and Civil Protection services, different Professional Mobile Radio (PMR) standards was analized. PMR, also known as land mobile radio (LMR) in North America, are field radio communications systems which use portable, mobile, base station, and dispatch console radios. It has referred to a suite of radio mobile network tecnologies deployed for missioncritical users, which need high affordable communication system. In the specific, PMR networks provide radio services for closed user group, group call and push-to-talk, and call set-up times which are generally short compared with cellular system. In addition, they provide communications in extreme situations that might cause failures in other communications network, like 2G or 3G. As a result of the analysis of the main digital PMR standards (TETRA and DMR) used in European countries, we decided to use the DMR standard to design the radio network for 118 service in Sardinia and for Civil Protection service. DMR has been identified as the best solution, which grants cost saving, high coverage, spectral efficiency and simplicity in network configuration and it is well suitable in wide area with a low/medium density of traffic. - The second and third chapter of the thesis are focused on improvement of the safety of operators in a maritime cargo terminal. Hence, a new infrastructure of a maritime cargo terminal has been defined, using a control system for monitoring workplace safety. By combining, in the control system, the inputs from a Body Area Network (BAN) integrated in the safety equipment and from CCTV cameras, a human supervisor is able to achieve an accurate overview of the entire situation in terms of work safety and act accordingly when needed. In addition, we focused even on the design and implementation of a working prototype of an RFID-based BAN sensor network for actively monitoring and preventing workplace safety risks in the same industrial area. This first conceptual and technological analysis, together with the test implementation, is the forerunner of a complex monitoring system in development to be implemented both for the specific case and for any industrial environment. - The last chapter aims to describe an indoor navigation system developed for smartphone android. Specifically, it has been demonstrated how the use of a gyroscope sensor can brings more benefits respect to a compass sensor to get the best detected position. Nowadays, modern mobile devices, such as smartphones and PDAs in general, come to the market already equipped with sensors able to track them as they move, both in outdoor and indoor environment. The sensing technologies embedded in such devices make it ideal for a wide range of location-based services, such as navigation applications. An Inertial Navigation System (INS) uses motion and rotation sensors in order to determine the position, orientation, and velocity of a moving object/user without the need of external infrastructures. This is essential in an indoor environment where common localization systems, such as Global Positioning System (GPS), fail due to severe attenuation or obscuration of the satellite's signal. In inertial navigation systems, localization/ orientation estimation is source-independent. The user's position is calculated in relation to a known starting position using a dead reckoning algorithm and the orientation is usually provided by a digital compass embedded in the smartphone. A digital compass sensor provides the orientation of the device relative to the magnetic north of the earth. However, when it is used in indoor environments, like any magnetic device, it is affected by significant error caused by nearby ferrous materials, as well as local electromagnetic fields. Such errors seriously affect the performance and the accuracy of the system, thus the need to investigate any alternative orientation technique. In the specific, we have developed an early prototype of a pedestrian navigation system for indoor environments based on dead reckoning, 2D barcodes and data from accelerometers and magnetometers. All the sensing and computing technologies of our solution are available in common smartphones. The prototype has been further improved by a new algorithm described afterwards and now it is able to estimate the correct current position of the user, track him inside the building and provide the best path to achieve a specific destination

    Communication technologies and data processing for safety

    Get PDF
    Emergency workers comprise large professional groups like volunteer fire-fighters, police officers, emergency medical staff and so on. Their professions have to deal frequently with a considerable number of a combination of health and safety risk factors, which are often unavoidable. For example, workplace scenes demanding the intervention of emergency workers may be located in remote, difficult to access areas (mountains, sea, caves), and sometimes in extremely difficult weather conditions. Moreover, emergency workers must arrive very rapidly at the disaster scene at any time of the day or night, and there is always the possibility of car crashes or other transportation accidents on the journey to the disaster scene or to hospitals. Others examples are the industrial workplaces, which are inherently places with a high concentration of heavy machinery, fast handling equipments, high heat and pressure pipes, polluted and explosive areas where people work in a relatively small area. Therefore, in an environment where situational awareness and tactical decision making are critical elements to a successful operation, it is really important to have available efficient instruments to ensure the safety for all operators that work in the field. Despite the fact that a lot sophisticated solutions have been used for increasing request due to the growing need of safety concerns by the operators, the mission-critical environments are still considered high-risk environments with serious work safety related issues and higher accident rates than in other workplaces. This study focuses on the safety precautions in outdoor and indoor environments, safety communication and Personal Protective Equipment (PPE) and proposes solutions to ensure secure and reliable communications between forces deployed in the field and their dispatch center, which is often of decisive importance for the work of the emergency services, analyzing two different important case studies. Moreover, we have designed a control system intended as a platform for real-time information capable of monitoring, by means of camera and sensor data harvesting about people and vehicles movements. It provides automatic and semi-automatic risk prevention measures thanks to the work in progress on designing and implementing a first working prototype of sensor network based on RFID BAN. These capabilities are the topic of a larger research project that aims to find the optimal solution in terms of feasibility and practical implementation. To conclude our study, we have developed a indoor navigation system for mobile devices. The application is able to follow the user and it indicates the shortest path to achieve a specific destination. It uses only smartphone motion sensor and not requires the use of extra equipment. Moreover, thanks to an algorithm widely explained afterwards and the use of the gyroscope sensor rather than the compass, the mobile application ensure a very good orientation. The thesis is organized as following: - In the first chapter, to design a radio communication system both for health emergency services and Civil Protection services, different Professional Mobile Radio (PMR) standards was analized. PMR, also known as land mobile radio (LMR) in North America, are field radio communications systems which use portable, mobile, base station, and dispatch console radios. It has referred to a suite of radio mobile network tecnologies deployed for missioncritical users, which need high affordable communication system. In the specific, PMR networks provide radio services for closed user group, group call and push-to-talk, and call set-up times which are generally short compared with cellular system. In addition, they provide communications in extreme situations that might cause failures in other communications network, like 2G or 3G. As a result of the analysis of the main digital PMR standards (TETRA and DMR) used in European countries, we decided to use the DMR standard to design the radio network for 118 service in Sardinia and for Civil Protection service. DMR has been identified as the best solution, which grants cost saving, high coverage, spectral efficiency and simplicity in network configuration and it is well suitable in wide area with a low/medium density of traffic. - The second and third chapter of the thesis are focused on improvement of the safety of operators in a maritime cargo terminal. Hence, a new infrastructure of a maritime cargo terminal has been defined, using a control system for monitoring workplace safety. By combining, in the control system, the inputs from a Body Area Network (BAN) integrated in the safety equipment and from CCTV cameras, a human supervisor is able to achieve an accurate overview of the entire situation in terms of work safety and act accordingly when needed. In addition, we focused even on the design and implementation of a working prototype of an RFID-based BAN sensor network for actively monitoring and preventing workplace safety risks in the same industrial area. This first conceptual and technological analysis, together with the test implementation, is the forerunner of a complex monitoring system in development to be implemented both for the specific case and for any industrial environment. - The last chapter aims to describe an indoor navigation system developed for smartphone android. Specifically, it has been demonstrated how the use of a gyroscope sensor can brings more benefits respect to a compass sensor to get the best detected position. Nowadays, modern mobile devices, such as smartphones and PDAs in general, come to the market already equipped with sensors able to track them as they move, both in outdoor and indoor environment. The sensing technologies embedded in such devices make it ideal for a wide range of location-based services, such as navigation applications. An Inertial Navigation System (INS) uses motion and rotation sensors in order to determine the position, orientation, and velocity of a moving object/user without the need of external infrastructures. This is essential in an indoor environment where common localization systems, such as Global Positioning System (GPS), fail due to severe attenuation or obscuration of the satellite's signal. In inertial navigation systems, localization/ orientation estimation is source-independent. The user's position is calculated in relation to a known starting position using a dead reckoning algorithm and the orientation is usually provided by a digital compass embedded in the smartphone. A digital compass sensor provides the orientation of the device relative to the magnetic north of the earth. However, when it is used in indoor environments, like any magnetic device, it is affected by significant error caused by nearby ferrous materials, as well as local electromagnetic fields. Such errors seriously affect the performance and the accuracy of the system, thus the need to investigate any alternative orientation technique. In the specific, we have developed an early prototype of a pedestrian navigation system for indoor environments based on dead reckoning, 2D barcodes and data from accelerometers and magnetometers. All the sensing and computing technologies of our solution are available in common smartphones. The prototype has been further improved by a new algorithm described afterwards and now it is able to estimate the correct current position of the user, track him inside the building and provide the best path to achieve a specific destination
    corecore