74,860 research outputs found

    Fast non-negative orthogonal least squares

    Get PDF

    Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

    Full text link
    Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe (FW) algorithms regained popularity in recent years due to their simplicity, effectiveness and theoretical guarantees. MP and FW address optimization over the linear span and the convex hull of a set of atoms, respectively. In this paper, we consider the intermediate case of optimization over the convex cone, parametrized as the conic hull of a generic atom set, leading to the first principled definitions of non-negative MP algorithms for which we give explicit convergence rates and demonstrate excellent empirical performance. In particular, we derive sublinear (O(1/t)\mathcal{O}(1/t)) convergence on general smooth and convex objectives, and linear convergence (O(e−t)\mathcal{O}(e^{-t})) on strongly convex objectives, in both cases for general sets of atoms. Furthermore, we establish a clear correspondence of our algorithms to known algorithms from the MP and FW literature. Our novel algorithms and analyses target general atom sets and general objective functions, and hence are directly applicable to a large variety of learning settings.Comment: NIPS 201

    An extended orthogonal forward regression algorithm for system identification using entropy

    Get PDF
    In this paper, a fast identification algorithm for nonlinear dynamic stochastic system identification is presented. The algorithm extends the classical Orthogonal Forward Regression (OFR) algorithm so that instead of using the Error Reduction Ratio (ERR) for term selection, a new optimality criterion —Shannon’s Entropy Power Reduction Ratio(EPRR) is introduced to deal with both Gaussian and non-Gaussian signals. It is shown that the new algorithm is both fast and reliable and examples are provided to illustrate the effectiveness of the new approach

    Solving for multi-class using orthogonal coding matrices

    Full text link
    A common method of generalizing binary to multi-class classification is the error correcting code (ECC). ECCs may be optimized in a number of ways, for instance by making them orthogonal. Here we test two types of orthogonal ECCs on seven different datasets using three types of binary classifier and compare them with three other multi-class methods: 1 vs. 1, one-versus-the-rest and random ECCs. The first type of orthogonal ECC, in which the codes contain no zeros, admits a fast and simple method of solving for the probabilities. Orthogonal ECCs are always more accurate than random ECCs as predicted by recent literature. Improvments in uncertainty coefficient (U.C.) range between 0.4--17.5% (0.004--0.139, absolute), while improvements in Brier score between 0.7--10.7%. Unfortunately, orthogonal ECCs are rarely more accurate than 1 vs. 1. Disparities are worst when the methods are paired with logistic regression, with orthogonal ECCs never beating 1 vs. 1. When the methods are paired with SVM, the losses are less significant, peaking at 1.5%, relative, 0.011 absolute in uncertainty coefficient and 6.5% in Brier scores. Orthogonal ECCs are always the fastest of the five multi-class methods when paired with linear classifiers. When paired with a piecewise linear classifier, whose classification speed does not depend on the number of training samples, classifications using orthogonal ECCs were always more accurate than the the remaining three methods and also faster than 1 vs. 1. Losses against 1 vs. 1 here were higher, peaking at 1.9% (0.017, absolute), in U.C. and 39% in Brier score. Gains in speed ranged between 1.1% and over 100%. Whether the speed increase is worth the penalty in accuracy will depend on the application

    On fast multiplication of a matrix by its transpose

    Get PDF
    We present a non-commutative algorithm for the multiplication of a 2x2-block-matrix by its transpose using 5 block products (3 recursive calls and 2 general products) over C or any finite field.We use geometric considerations on the space of bilinear forms describing 2x2 matrix products to obtain this algorithm and we show how to reduce the number of involved additions.The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its transpose to general matrix product, improving by a constant factor previously known reductions.Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a finite field.To conclude, we show how to use our result in LDLT factorization.Comment: ISSAC 2020, Jul 2020, Kalamata, Greec
    • …
    corecore