8,131 research outputs found

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Estimating Dependency, Monitoring and Knowledge Discovery in High-Dimensional Data Streams

    Get PDF
    Data Mining – known as the process of extracting knowledge from massive data sets – leads to phenomenal impacts on our society, and now affects nearly every aspect of our lives: from the layout in our local grocery store, to the ads and product recommendations we receive, the availability of treatments for common diseases, the prevention of crime, or the efficiency of industrial production processes. However, Data Mining remains difficult when (1) data is high-dimensional, i.e., has many attributes, and when (2) data comes as a stream. Extracting knowledge from high-dimensional data streams is impractical because one must cope with two orthogonal sets of challenges. On the one hand, the effects of the so-called "curse of dimensionality" bog down the performance of statistical methods and yield to increasingly complex Data Mining problems. On the other hand, the statistical properties of data streams may evolve in unexpected ways, a phenomenon known in the community as "concept drift". Thus, one needs to update their knowledge about data over time, i.e., to monitor the stream. While previous work addresses high-dimensional data sets and data streams to some extent, the intersection of both has received much less attention. Nevertheless, extracting knowledge in this setting is advantageous for many industrial applications: identifying patterns from high-dimensional data streams in real-time may lead to larger production volumes, or reduce operational costs. The goal of this dissertation is to bridge this gap. We first focus on dependency estimation, a fundamental task of Data Mining. Typically, one estimates dependency by quantifying the strength of statistical relationships. We identify the requirements for dependency estimation in high-dimensional data streams and propose a new estimation framework, Monte Carlo Dependency Estimation (MCDE), that fulfils them all. We show that MCDE leads to efficient dependency monitoring. Then, we generalise the task of monitoring by introducing the Scaling Multi-Armed Bandit (S-MAB) algorithms, extending the Multi-Armed Bandit (MAB) model. We show that our algorithms can efficiently monitor statistics by leveraging user-specific criteria. Finally, we describe applications of our contributions to Knowledge Discovery. We propose an algorithm, Streaming Greedy Maximum Random Deviation (SGMRD), which exploits our new methods to extract patterns, e.g., outliers, in high-dimensional data streams. Also, we present a new approach, that we name kj-Nearest Neighbours (kj-NN), to detect outlying documents within massive text corpora. We support our algorithmic contributions with theoretical guarantees, as well as extensive experiments against both synthetic and real-world data. We demonstrate the benefits of our methods against real-world use cases. Overall, this dissertation establishes fundamental tools for Knowledge Discovery in high-dimensional data streams, which help with many applications in the industry, e.g., anomaly detection, or predictive maintenance. To facilitate the application of our results and future research, we publicly release our implementations, experiments, and benchmark data via open-source platforms

    Iterative estimation of mutual information with error bounds

    Get PDF
    Mutual Information (MI) is an established measure for linear and nonlinear dependencies between two variables. Estimating MI is nontrivial and requires notable computation power for high estimation quality. While some estimation techniques allow trading result quality for lower runtimes, this tradeoff is fixed per task and cannot be adjusted. If the available time is unknown in advance or is overestimated, one may need to abort the estimation without any result. Conversely, when there are several estimation tasks, and one wants to budget computation time between them, there currently is no efficient way to adjust it dynamically based on certain targets, e.g., high MI values or MI values close to a constant. In this article, we present an iterative estimator of MI. Our method offers an estimate with low quality near-instantly and improves this estimate in fine grained steps with more computation time. The estimate also converges towards the result of a conventional estimator. We prove that the time complexity for this convergence is only slightly slower than non-iterative estimation. Additionally, with each step our estimator also tightens statistical guarantees regarding the convergence result, i.e., confidence intervals, progressively. These also serve as quality indicators for early estimates and allow to reliably discern between attribute pairs with weak and strong dependencies. Our experiments show that these guarantees can also be used to execute threshold queries faster compared to non-iterative estimation

    A framework for dependency estimation in heterogeneous data streams

    Get PDF
    Estimating dependencies from data is a fundamental task of Knowledge Discovery. Identifying the relevant variables leads to a better understanding of data and improves both the runtime and the outcomes of downstream Data Mining tasks. Dependency estimation from static numerical data has received much attention. However, real-world data often occurs as heterogeneous data streams: On the one hand, data is collected online and is virtually infinite. On the other hand, the various components of a stream may be of different types, e.g., numerical, ordinal or categorical. For this setting, we propose Monte Carlo Dependency Estimation (MCDE), a framework that quantifies multivariate dependency as the average statistical discrepancy between marginal and conditional distributions, via Monte Carlo simulations. MCDE handles heterogeneity by leveraging three statistical tests: the Mann–Whitney U, the Kolmogorov–Smirnov and the Chi-Squared test. We demonstrate that MCDE goes beyond the state of the art regarding dependency estimation by meeting a broad set of requirements. Finally, we show with a real-world use case that MCDE can discover useful patterns in heterogeneous data streams

    AMIC:An Adaptive Information Theoretic Method to Identify Multi-Scale Temporal Correlations in Big Time Series Data

    Get PDF

    Learning from power system data stream: phasor-detective approach

    Full text link
    Assuming access to synchronized stream of Phasor Measurement Unit (PMU) data over a significant portion of a power system interconnect, say controlled by an Independent System Operator (ISO), what can you extract about past, current and future state of the system? We have focused on answering this practical questions pragmatically - empowered with nothing but standard tools of data analysis, such as PCA, filtering and cross-correlation analysis. Quite surprisingly we have found that even during the quiet "no significant events" period this standard set of statistical tools allows the "phasor-detective" to extract from the data important hidden anomalies, such as problematic control loops at loads and wind farms, and mildly malfunctioning assets, such as transformers and generators. We also discuss and sketch future challenges a mature phasor-detective can possibly tackle by adding machine learning and physics modeling sophistication to the basic approach
    • …
    corecore