323 research outputs found

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    Active contours for intensity inhomogeneous image segmentation

    Get PDF
    La “inhomogeneidad” (falta d'homogeneïtat) d'intensitat és un problema ben conegut en la segmentació d'imatges, la qual cosa afecta la precisió dels mètodes de segmentació basats en la intensitat. En aquesta tesi, es proposen mètodes de contorn actiu basat en fronteres i regions per segmentar imatges inhomogènies. En primer lloc, s'ha proposat un mètode de contorn actiu basat en fronteres mitjançant Diferència de Gaussianes (DoG), que ajuda a segmentar l'estructura global de la imatge. En segon lloc, hem proposat un mètode de contorn actiu basat en regions per corregir i segmentar imatges inhomogènies. S'ha utilitzat un nucli de transformació de fase (phase stretch transform - PST) per calcular noves intensitats mitjanes i camps de polarització, que s'empren per definir una imatge ajustada de polarització. En tercer lloc, s'ha proposat un altre mètode de contorn actiu basat en regions utilitzant un funcional d'energia basat en imatges ajustades locals i globals. El camp de polarització s'aproxima amb una distribució Gaussiana i el biaix de les regions no homogènies es corregeix dividint la imatge original pel camp aproximat de polarització. Finalment, s'ha proposat un mètode híbrid de contorns actius multifàsic (quatre fases) per dividir una imatge de RM cerebral en tres regions diferents: matèria blanca (WM), matèria grisa (GM) i líquid cefaloraquidi (CSF). En aquest treball, també s'ha dissenyat un mètode de post-processat (correcció de píxels) per millorar la precisió de les regions WM, GM i CSF segmentades. S'han utilitzat resultats experimentals tant amb imatges sintètiques com amb imatges reals de RM del cervell per a una comparació quantitativa i qualitativa amb mètodes de contorns actius de l'estat de l'art per mostrar els avantatges de les tècniques de segmentació proposades.La “inhomogeneidad” (falta de homogeneidad) de intensidad es un problema bien conocido en la segmentación de imágenes, lo que afecta la precisión de los métodos de segmentación basados en la intensidad. En esta tesis, se proponen métodos de contorno activo basado en bordes y regiones para segmentar imágenes inhomogéneas. En primer lugar, se ha propuesto un método de contorno activo basado en fronteras mediante Diferencia de Gaussianas (DoG), que ayuda a segmentar la estructura global de la imagen. En segundo lugar, hemos propuesto un método de contorno activo basado en regiones para corregir y segmentar imágenes inhomogéneas. Se ha utilizado un núcleo de transformación de fase (phase stretch transform - PST) para calcular nuevas intensidades medias y campos de polarización, que se emplean para definir una imagen ajustada de polarización. En tercer lugar, se ha propuesto otro método de contorno activo basado en regiones utilizando un funcional de energía basado en imágenes ajustadas locales y globales. El campo de polarización se aproxima con una distribución Gaussiana y el sesgo de las regiones no homogéneas se corrige dividiendo la imagen original por el campo aproximado de polarización. Finalmente, se ha propuesto un método híbrido de contornos activos multifásico (cuatro fases) para dividir una imagen de RM cerebral en tres regiones distintas: materia blanca (WM), materia gris (GM) y líquido cefalorraquídeo (CSF). En este trabajo, también se ha diseñado un método de post-procesado (corrección de píxeles) para mejorar la precisión de las regiones WM, GM y CSF segmentadas. Se han utilizado resultados experimentales tanto con imágenes sintéticas como con imágenes reales de RM del cerebro para una comparación cuantitativa y cualitativa con métodos de contornos activos del estado del arte para mostrar las ventajas de las técnicas de segmentación propuestas.Intensity inhomogeneity is a well-known problem in image segmentation, which affects the accuracy of intensity-based segmentation methods. In this thesis, edge-based and region-based active contour methods are proposed to segment intensity inhomogeneous images. Firstly, we have proposed an edge-based active contour method based on the Difference of Gaussians (DoG), which helps to segment the global structure of the image. Secondly, we have proposed a region-based active contour method to both correct and segment intensity inhomogeneous images. A phase stretch transform (PST) kernel has been used to compute new intensity means and bias field, which are employed to define a bias fitted image. Thirdly, another region-based active contour method has been proposed using an energy functional based on local and global fitted images. Bias field is approximated with a Gaussian distribution and the bias of intensity inhomogeneous regions is corrected by dividing the original image by the approximated bias field. Finally, a hybrid region-based multiphase (four-phase) active contours method has been proposed to partition a brain MR image into three distinct regions: white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). In this work, a post-processing (pixel correction) method has also been devised to improve the accuracy of the segmented WM, GM and CSF regions. Experimental results with both synthetic and real brain MR images have been used for a quantitative and qualitative comparison with state-of-the-art active contour methods to show the advantages of the proposed segmentation techniques

    Joint Brain Parametric T1-Map Segmentation and RF Inhomogeneity Calibration

    Get PDF
    We propose a constrained version of Mumford and Shah's (1989) segmentation model with an information-theoretic point of view in order to devise a systematic procedure to segment brain magnetic resonance imaging (MRI) data for parametric T1-Map and T1-weighted images, in both 2-D and 3D settings. Incorporation of a tuning weight in particular adds a probabilistic flavor to our segmentation method, and makes the 3-tissue segmentation possible. Moreover, we proposed a novel method to jointly segment the T1-Map and calibrate RF Inhomogeneity (JSRIC). This method assumes the average T1 value of white matter is the same across transverse slices in the central brain region, and JSRIC is able to rectify the flip angles to generate calibrated T1-Maps. In order to generate an accurate T1-Map, the determination of optimal flip-angles and the registration of flip-angle images are examined. Our JSRIC method is validated on two human subjects in the 2D T1-Map modality and our segmentation method is validated by two public databases, BrainWeb and IBSR, of T1-weighted modality in the 3D setting

    Robot navigation control based on monocular images: An image processing algorithm for obstacle avoidance decisions

    Get PDF
    This paper covers the use of monocular vision to control autonomous navigation for a robot in a dynamically changing environment. The solution focused on using colour segmentation against a selected floor plane to distinctly separate obstacles from traversable space, this is then supplemented with canny edge detection to separate similarly coloured boundaries to the floor plane. The resulting binary map (where white identifies an obstacle-free area and black identifies an obstacle) could then be processed by fuzzy logic or neural networks to control the robot’s next movements. Findings shows that the algorithm performed strongly on solid coloured carpets, wooden and concrete floors but had difficulty in separating colours in multi-coloured floor types such as patterned carpets
    corecore