5,250 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronales

    Get PDF
    Las cirugías mínimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugía, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, técnica llamada endoneurosonografía (ENS), para la virtualización 3D de las estructuras del cerebro en tiempo real. La información ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugía. En este trabajo, presentamos una metodología para el modelado 3D de tumores cerebrales con ENS y redes neuronales. Específicamente, se estudió el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparación con otras técnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfología del tumor se codifica directamente sobre los pesos sinápticos de la red, no requiere ningún conocimiento a priori y la representación puede ser desarrollada en dos etapas: entrenamiento fuera de línea y adaptación en línea. Se realizan pruebas experimentales con maniquíes médicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.Minimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed

    Intraoperative Navigation Systems for Image-Guided Surgery

    Get PDF
    Recent technological advancements in medical imaging equipment have resulted in a dramatic improvement of image accuracy, now capable of providing useful information previously not available to clinicians. In the surgical context, intraoperative imaging provides a crucial value for the success of the operation. Many nontrivial scientific and technical problems need to be addressed in order to efficiently exploit the different information sources nowadays available in advanced operating rooms. In particular, it is necessary to provide: (i) accurate tracking of surgical instruments, (ii) real-time matching of images from different modalities, and (iii) reliable guidance toward the surgical target. Satisfying all of these requisites is needed to realize effective intraoperative navigation systems for image-guided surgery. Various solutions have been proposed and successfully tested in the field of image navigation systems in the last ten years; nevertheless several problems still arise in most of the applications regarding precision, usability and capabilities of the existing systems. Identifying and solving these issues represents an urgent scientific challenge. This thesis investigates the current state of the art in the field of intraoperative navigation systems, focusing in particular on the challenges related to efficient and effective usage of ultrasound imaging during surgery. The main contribution of this thesis to the state of the art are related to: Techniques for automatic motion compensation and therapy monitoring applied to a novel ultrasound-guided surgical robotic platform in the context of abdominal tumor thermoablation. Novel image-fusion based navigation systems for ultrasound-guided neurosurgery in the context of brain tumor resection, highlighting their applicability as off-line surgical training instruments. The proposed systems, which were designed and developed in the framework of two international research projects, have been tested in real or simulated surgical scenarios, showing promising results toward their application in clinical practice

    Non-Rigid Liver Registration for Laparoscopy using Data-Driven Biomechanical Models

    Get PDF
    During laparoscopic liver resection, the limited access to the organ, the small field of view and lack of palpation can obstruct a surgeon’s workflow. Automatic navigation systems could use the images from preoperative volumetric organ scans to help the surgeons find their target (tumors) and risk-structures (vessels) more efficiently. This requires the preoperative data to be fused (or registered) with the intraoperative scene in order to display information at the correct intraoperative position. One key challenge in this setting is the automatic estimation of the organ’s current intra-operative deformation, which is required in order to predict the position of internal structures. Parameterizing the many patient-specific unknowns (tissue properties, boundary conditions, interactions with other tissues, direction of gravity) is very difficult. Instead, this work explores how to employ deep neural networks to solve the registration problem in a data-driven manner. To this end, convolutional neural networks are trained on synthetic data to estimate an organ’s intraoperative displacement field and thus its current deformation. To drive this estimation, visible surface cues from the intraoperative camera view must be supplied to the networks. Since reliable surface features are very difficult to find, the networks are adapted to also find correspondences between the pre- and intraoperative liver geometry automatically. This combines the search for correspondences with the biomechanical behavior estimation and allows the networks to tackle the full non-rigid registration problem in one single step. The result is a model which can quickly predict the volume deformation of a liver, given only sparse surface information. The model combines the advantages of a physically accurate biomechanical simulation with the speed and powerful feature extraction capabilities of deep neural networks. To test the method intraoperatively, a registration pipeline is developed which constructs a map of the liver and its surroundings from the laparoscopic video and then uses the neural networks to fuse the preoperative volume data into this map. The deformed organ volume can then be rendered as an overlay directly onto the laparoscopic video stream. The focus of this pipeline is to be applicable to real surgery, where everything should be quick and non-intrusive. To meet these requirements, a SLAM system is used to localize the laparoscopic camera (avoiding setup of an external tracking system), various neural networks are used to quickly interpret the scene and semi-automatic tools let the surgeons guide the system. Beyond the concrete advantages of the data-driven approach for intraoperative registration, this work also demonstrates general benefits of training a registration system preoperatively on synthetic data. The method lets the engineer decide which values need to be known explicitly and which should be estimated implicitly by the networks, which opens the door to many new possibilities.:1 Introduction 1.1 Motivation 1.1.1 Navigated Liver Surgery 1.1.2 Laparoscopic Liver Registration 1.2 Challenges in Laparoscopic Liver Registration 1.2.1 Preoperative Model 1.2.2 Intraoperative Data 1.2.3 Fusion/Registration 1.2.4 Data 1.3 Scope and Goals of this Work 1.3.1 Data-Driven, Biomechanical Model 1.3.2 Data-Driven Non-Rigid Registration 1.3.3 Building a Working Prototype 2 State of the Art 2.1 Rigid Registration 2.2 Non-Rigid Liver Registration 2.3 Neural Networks for Simulation and Registration 3 Theoretical Background 3.1 Liver 3.2 Laparoscopic Liver Resection 3.2.1 Staging Procedure 3.3 Biomechanical Simulation 3.3.1 Physical Balance Principles 3.3.2 Material Models 3.3.3 Numerical Solver: The Finite Element Method (FEM) 3.3.4 The Lagrangian Specification 3.4 Variables and Data in Liver Registration 3.4.1 Observable 3.4.2 Unknowns 4 Generating Simulations of Deforming Organs 4.1 Organ Volume 4.2 Forces and Boundary Conditions 4.2.1 Surface Forces 4.2.2 Zero-Displacement Boundary Conditions 4.2.3 Surrounding Tissues and Ligaments 4.2.4 Gravity 4.2.5 Pressure 4.3 Simulation 4.3.1 Static Simulation 4.3.2 Dynamic Simulation 4.4 Surface Extraction 4.4.1 Partial Surface Extraction 4.4.2 Surface Noise 4.4.3 Partial Surface Displacement 4.5 Voxelization 4.5.1 Voxelizing the Liver Geometry 4.5.2 Voxelizing the Displacement Field 4.5.3 Voxelizing Boundary Conditions 4.6 Pruning Dataset - Removing Unwanted Results 4.7 Data Augmentation 5 Deep Neural Networks for Biomechanical Simulation 5.1 Training Data 5.2 Network Architecture 5.3 Loss Functions and Training 6 Deep Neural Networks for Non-Rigid Registration 6.1 Training Data 6.2 Architecture 6.3 Loss 6.4 Training 6.5 Mesh Deformation 6.6 Example Application 7 Intraoperative Prototype 7.1 Image Acquisition 7.2 Stereo Calibration 7.3 Image Rectification, Disparity- and Depth- estimation 7.4 Liver Segmentation 7.4.1 Synthetic Image Generation 7.4.2 Automatic Segmentation 7.4.3 Manual Segmentation Modifier 7.5 SLAM 7.6 Dense Reconstruction 7.7 Rigid Registration 7.8 Non-Rigid Registration 7.9 Rendering 7.10 Robotic Operating System 8 Evaluation 8.1 Evaluation Datasets 8.1.1 In-Silico 8.1.2 Phantom Torso and Liver 8.1.3 In-Vivo, Human, Breathing Motion 8.1.4 In-Vivo, Human, Laparoscopy 8.2 Metrics 8.2.1 Mean Displacement Error 8.2.2 Target Registration Error (TRE) 8.2.3 Champfer Distance 8.2.4 Volumetric Change 8.3 Evaluation of the Synthetic Training Data 8.4 Data-Driven Biomechanical Model (DDBM) 8.4.1 Amount of Intraoperative Surface 8.4.2 Dynamic Simulation 8.5 Volume to Surface Registration Network (V2S-Net) 8.5.1 Amount of Intraoperative Surface 8.5.2 Dependency on Initial Rigid Alignment 8.5.3 Registration Accuracy in Comparison to Surface Noise 8.5.4 Registration Accuracy in Comparison to Material Stiffness 8.5.5 Champfer-Distance vs. Mean Displacement Error 8.5.6 In-vivo, Human Breathing Motion 8.6 Full Intraoperative Pipeline 8.6.1 Intraoperative Reconstruction: SLAM and Intraoperative Map 8.6.2 Full Pipeline on Laparoscopic Human Data 8.7 Timing 9 Discussion 9.1 Intraoperative Model 9.2 Physical Accuracy 9.3 Limitations in Training Data 9.4 Limitations Caused by Difference in Pre- and Intraoperative Modalities 9.5 Ambiguity 9.6 Intraoperative Prototype 10 Conclusion 11 List of Publications List of Figures Bibliograph

    Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance.

    Get PDF
    OBJECTIVE: During epilepsy surgery it is important for the surgeon to correlate the preoperative cortical morphology (from preoperative images) with the intraoperative environment. Augmented Reality (AR) provides a solution for combining the real environment with virtual models. However, AR usually requires the use of specialized displays, and its effectiveness in the surgery still needs to be evaluated. The objective of this research was to develop an alternative approach to provide enhanced visualization by fusing a direct (photographic) view of the surgical field with the 3D patient model during image guided epilepsy surgery. MATERIALS AND METHODS: We correlated the preoperative plan with the intraoperative surgical scene, first by a manual landmark-based registration and then by an intensity-based perspective 3D-2D registration for camera pose estimation. The 2D photographic image was then texture-mapped onto the 3D preoperative model using the solved camera pose. In the proposed method, we employ direct volume rendering to obtain a perspective view of the brain image using GPU-accelerated ray-casting. The algorithm was validated by a phantom study and also in the clinical environment with a neuronavigation system. RESULTS: In the phantom experiment, the 3D Mean Registration Error (MRE) was 2.43 ± 0.32 mm with a success rate of 100%. In the clinical experiment, the 3D MRE was 5.15 ± 0.49 mm with 2D in-plane error of 3.30 ± 1.41 mm. A clinical application of our fusion method for enhanced and augmented visualization for integrated image and functional guidance during neurosurgery is also presented. CONCLUSIONS: This paper presents an alternative approach to a sophisticated AR environment for assisting in epilepsy surgery, whereby a real intraoperative scene is mapped onto the surface model of the brain. In contrast to the AR approach, this method needs no specialized display equipment. Moreover, it requires minimal changes to existing systems and workflow, and is therefore well suited to the OR environment. In the phantom and in vivo clinical experiments, we demonstrate that the fusion method can achieve a level of accuracy sufficient for the requirements of epilepsy surgery
    corecore