674 research outputs found

    Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees

    Full text link
    We study the effect of boundary conditions on the relaxation time of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter λ\lambda, called the activity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor bb, the hard-core model can be equivalently defined as a broadcasting process with a parameter ω\omega which is the positive solution to λ=ω(1+ω)b\lambda=\omega(1+\omega)^b, and vertices are occupied with probability ω/(1+ω)\omega/(1+\omega) when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and non-reconstruction regions at ωrlnb/b\omega_r\approx \ln{b}/b. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular bb-ary trees ThT_h of height hh and nn vertices, undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any ωlnb/b\omega \le \ln{b}/b, for ThT_h with any boundary condition, the relaxation time is Ω(n)\Omega(n) and O(n1+ob(1))O(n^{1+o_b(1)}). In contrast, above the reconstruction threshold we show that for every δ>0\delta>0, for ω=(1+δ)lnb/b\omega=(1+\delta)\ln{b}/b, the relaxation time on ThT_h with any boundary condition is O(n1+δ+ob(1))O(n^{1+\delta + o_b(1)}), and we construct a boundary condition where the relaxation time is Ω(n1+δ/2ob(1))\Omega(n^{1+\delta/2 - o_b(1)})

    Glauber dynamics on trees:Boundary conditions and mixing time

    Full text link
    We give the first comprehensive analysis of the effect of boundary conditions on the mixing time of the Glauber dynamics in the so-called Bethe approximation. Specifically, we show that spectral gap and the log-Sobolev constant of the Glauber dynamics for the Ising model on an n-vertex regular tree with plus-boundary are bounded below by a constant independent of n at all temperatures and all external fields. This implies that the mixing time is O(log n) (in contrast to the free boundary case, where it is not bounded by any fixed polynomial at low temperatures). In addition, our methods yield simpler proofs and stronger results for the spectral gap and log-Sobolev constant in the regime where there are multiple phases but the mixing time is insensitive to the boundary condition. Our techniques also apply to a much wider class of models, including those with hard-core constraints like the antiferromagnetic Potts model at zero temperature (proper colorings) and the hard--core lattice gas (independent sets)

    Phase transition for the mixing time of the Glauber dynamics for coloring regular trees

    Full text link
    We prove that the mixing time of the Glauber dynamics for random k-colorings of the complete tree with branching factor b undergoes a phase transition at k=b(1+ob(1))/lnbk=b(1+o_b(1))/\ln{b}. Our main result shows nearly sharp bounds on the mixing time of the dynamics on the complete tree with n vertices for k=Cb/lnbk=Cb/\ln{b} colors with constant C. For C1C\geq1 we prove the mixing time is O(n1+ob(1)lnn)O(n^{1+o_b(1)}\ln{n}). On the other side, for C<1C<1 the mixing time experiences a slowing down; in particular, we prove it is O(n1/C+ob(1)lnn)O(n^{1/C+o_b(1)}\ln{n}) and Ω(n1/Cob(1))\Omega(n^{1/C-o_b(1)}). The critical point C=1 is interesting since it coincides (at least up to first order) with the so-called reconstruction threshold which was recently established by Sly. The reconstruction threshold has been of considerable interest recently since it appears to have close connections to the efficiency of certain local algorithms, and this work was inspired by our attempt to understand these connections in this particular setting.Comment: Published in at http://dx.doi.org/10.1214/11-AAP833 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Full text link
    Recent results establish for 2-spin antiferromagnetic systems that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs (#BIS-hardness). We improve this hardness result by establishing it for bipartite graphs of maximum degree D. We first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. As a corollary, it is #BIS-hard to approximate the number of k-colorings on bipartite graphs of maximum degree D when k <= D/(2 ln D). The #BIS-hardness result for the ferromagnetic Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. We extend these connections to random regular graphs for all ferromagnetic models and establish the Bethe prediction for every ferromagnetic spin system on random regular graphs. We also prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing on random D-regular graphs at the critical temperature for large q.Comment: To appear in SIAM J. Computin

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for qαd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree
    corecore