29,193 research outputs found

    Physically Based Mesh-free Deformation Framework and Techniques for Computer Graphics

    Get PDF
    In this thesis, we introduce a mesh-free deformation framework. Four different applications are presented based on it. Among them, a technique of mesh-free deformations and a technique ofreusable deformations are to model the deformations in two different ways, while the hyper-twist and the force mapping are applied to other graphic purposes related to deformations.Existing physicanv-based deformation techniques, such as the finite element method and the massspring systems, require the deformed object to be properly meshed. The proposed mesh-free deformations are constructed with unconnected points and no mesh is required in the computation.This process strict~1' follows the principles of classic mechanics and a deformation is defined as a combination of fundamental solutions. Because no mesh is involved, deforming a complex shape is as straightforw'ard as deforming a simple one and the trade-off between efficiency and accuracy is easy to achieve by redistributing the points concerned. Experiments show that this method is fast and offers similar accuracy to the finite element methods.Reducing both computational cost and amount of unnecessary human intervention remains a pressing issue in the animation production. To provide a faster and more user-friendly tool, we extend the above mesh-free deformations technique and develop another technique. A key feature is thereusability of deformations. Existing deformations can be simply extracted and reapplied physicallyusing the 'copy' and 'paste' operations. it relieves the modelling efforts. In this way, the visual realism is combined with the modelling efficiency and the user-friendliness for animators.The mesh-free deformation framework is capable to describe the deformations in an infinite body which is in line with the distortion of a 3D space. The twist of an infinite body, hyper-twist, is investigated to show how a 3D space and the object embedded can be radically deformed. Abstract shapes with aesthetic effects can be created in this process as well as their animations. Following the idea of mesh-free computation, we apply forces on a surface to create the fine details of the surface. A force map records the applied forces and their distributions. We call this technique force mapping, which can be used for surface modeling, compression, reconstruction and editing. As an alternative to displacement mapping, force mapping benefits from the fact that the physical property, force, is integrated into a geometric surface explicitly

    Physically based mesh-free deformation framework and techniques for computer graphics

    Get PDF
    In this thesis, we introduce a mesh-free deformation framework. Four different applications are presented based on it. Among them, a technique of mesh-free deformations and a technique ofreusable deformations are to model the deformations in two different ways, while the hyper-twist and the force mapping are applied to other graphic purposes related to deformations.Existing physicanv-based deformation techniques, such as the finite element method and the massspring systems, require the deformed object to be properly meshed. The proposed mesh-free deformations are constructed with unconnected points and no mesh is required in the computation.This process strict~1' follows the principles of classic mechanics and a deformation is defined as a combination of fundamental solutions. Because no mesh is involved, deforming a complex shape is as straightforw'ard as deforming a simple one and the trade-off between efficiency and accuracy is easy to achieve by redistributing the points concerned. Experiments show that this method is fast and offers similar accuracy to the finite element methods.Reducing both computational cost and amount of unnecessary human intervention remains a pressing issue in the animation production. To provide a faster and more user-friendly tool, we extend the above mesh-free deformations technique and develop another technique. A key feature is thereusability of deformations. Existing deformations can be simply extracted and reapplied physicallyusing the 'copy' and 'paste' operations. it relieves the modelling efforts. In this way, the visual realism is combined with the modelling efficiency and the user-friendliness for animators.The mesh-free deformation framework is capable to describe the deformations in an infinite body which is in line with the distortion of a 3D space. The twist of an infinite body, hyper-twist, is investigated to show how a 3D space and the object embedded can be radically deformed. Abstract shapes with aesthetic effects can be created in this process as well as their animations. Following the idea of mesh-free computation, we apply forces on a surface to create the fine details of the surface. A force map records the applied forces and their distributions. We call this technique force mapping, which can be used for surface modeling, compression, reconstruction and editing. As an alternative to displacement mapping, force mapping benefits from the fact that the physical property, force, is integrated into a geometric surface explicitly.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Animating Human Muscle Structure

    Get PDF
    Graphical simulations of human muscle motion and deformation are of great interest to medical education. In this article, the authors present a technique for simulating muscle deformations by combining physically and geometrically based computations to reduce computation cost and produce fast, accurate simulations

    Shape manipulation using physically based wire deformations

    Get PDF
    This paper develops an efficient, physically based shape manipulation technique. It defines a 3D model with profile curves, and uses spine curves generated from the profile curves to control the motion and global shape of 3D models. Profile and spine curves are changed into profile and spine wires by specifying proper material and geometric properties together with external forces. The underlying physics is introduced to deform profile and spine wires through the closed form solution to ordinary differential equations for axial and bending deformations. With the proposed approach, global shape changes are achieved through manipulating spine wires, and local surface details are created by deforming profile wires. A number of examples are presented to demonstrate the applications of our proposed approach in shape manipulation

    MonoPerfCap: Human Performance Capture from Monocular Video

    Full text link
    We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.Comment: Accepted to ACM TOG 2018, to be presented on SIGGRAPH 201

    Shape basis interpretation for monocular deformable 3D reconstruction

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a novel interpretable shape model to encode object non-rigidity. We first use the initial frames of a monocular video to recover a rest shape, used later to compute a dissimilarity measure based on a distance matrix measurement. Spectral analysis is then applied to this matrix to obtain a reduced shape basis, that in contrast to existing approaches, can be physically interpreted. In turn, these pre-computed shape bases are used to linearly span the deformation of a wide variety of objects. We introduce the low-rank basis into a sequential approach to recover both camera motion and non-rigid shape from the monocular video, by simply optimizing the weights of the linear combination using bundle adjustment. Since the number of parameters to optimize per frame is relatively small, specially when physical priors are considered, our approach is fast and can potentially run in real time. Validation is done in a wide variety of real-world objects, undergoing both inextensible and extensible deformations. Our approach achieves remarkable robustness to artifacts such as noisy and missing measurements and shows an improved performance to competing methods.Peer ReviewedPostprint (author's final draft
    • …
    corecore