28 research outputs found

    Fast marching subjected to a vector field-path planning method for mars rovers

    Get PDF
    Path planning is an essential tool for the robots that explore the surface of Mars or other celestial bodies such as dwarf planets, asteroids, or moons. These vehicles require expert and intelligent systems to adopt the best decisions in order to survive in a hostile environment. The planning module has to take into account multiple factors such as the obstacles, the slope of the terrain, the surface roughness, the type of ground (presence of sand), or the information uncertainty. This paper presents a path planning system for rovers based on an improved version of the Fast Marching (FM) method. Scalar and vectorial properties are considered when computing the potential field which is the basis of the proposed technique. Each position in the map of the environment has a cost value (potential) that is used to include different types of variables. The scalar properties can be introduced in a component of the cost function that can represent characteristics such as difficulty, slowness, viscosity, refraction index, or incertitude. The cost value can be computed in different ways depending on the information extracted from the surface and the sensor data of the rover. In this paper, the surface roughness, the slope of the terrain, and the changes in height have been chosen according to the available information. When the robot is navigating sandy terrain with a certain slope, there is a landslide that has to be considered and corrected in the path calculation. This landslide is similar to a lateral current or vector field in the direction of the negative gradient of the surface. Our technique is able to compensate this vector field by introducing the influence of this variable in the cost function. Because of this modification, the new method has been called Fast Marching (subjected to a) vector field (FMVF). Different experiments have been carried out in simulated and real maps to test the method performance.Publicad

    Stable locomotion of humanoid robots based on mass concentrated model

    Get PDF
    El estudio de la locomoción de robots humanoides es actualmente un área muy activa, en el campo de la robótica. Partiendo del principio que el hombre esta construyendo robots para trabajar juntos cooperando en ambientes humanos. La estabilidad durante la caminata es un factor crítico que prevee la caída del robot, la cual puede causar deterioros al mismo y a las personas en su entorno. De esta manera, el presente trabajo pretende resolver una parte del problema de la locomoción bípeda, esto es los métodos empleados para “La generación del paso” (“Gait generation”) y asi obtener la caminata estable. Para obtener una marcha estable se utilizan modelos de masa concentrada. De esta manera el modelo del “pendulo invertido simple” y el modelo del “carro sobre la mesa” se han utilizado para conseguir la marcha estable de robots humanoides. En el modelo del pendulo invertido, la masa el pendulo conduce el movimiento del centro de gravedad (CDG) del robot humanoide durante la marcha. Se detallara que el CDG se mueve como una bola libre sobre un plano bajo las leyes del pendulo en el campo de gravedad. Mientras que en el modelo del “carro sobre la mesa”, el carro conduce el movimiento del CDG durante la marcha. En este caso, el movimiento del carro es tratado como un sistema servocontrolado, y el movimiento del CDG es obtenido con los actuales y futuros estados de referencia del Zero Moment Point (ZMP). El método para generar el paso propuesto esta compuesto de varias capas como son Movimiento global, movimiento local, generación de patrones de movimiento, cinemática inversa y dinámica inversa y finalmente una corrección off-line. Donde la entrada en este método es la meta global (es decir la configuración final del robot, en el entorno de marcha) y las salidas son los patrones de movimiento de las articulaciones junto con el patrón de referencia del ZMP. Por otro lado, se ha propuesto el método para generar el “Paso acíclico”. Este método abarca el movimiento del paso dinámico incluyendo todo el cuerpo del robot humanoide, desde desde cuaquier postura genérica estáticamente estable hasta otra; donde las entradas son los estados inicial y final del robot (esto es los ángulos iniciales y finales de las articulaciones) y las salidas son las trayectorias de referencia de cada articulación y del ZMP. Se han obtenido resultados satisfactorios en las simulaciones y en el robot humanoide real Rh-1 desarrollado en el Robotics lab de la Universidad Carlos III de Madrid. De igual manera el movimiento innovador llamado “Paso acíclico” se ha implemenado exitosamente en el robot humanoide HRP-2 (desarrollado por el AIST e Industrias Kawada Inc., Japon). Finalmente los resultados, contribuciones y trabajos futuros se expondran y discutirán. _______________________________________________The study of humanoid robot locomotion is currently a very active area in robotics, since humans build robots to work their environments in common cooperation and in harmony. Stability during walking motion is a critical fact in preventing the robot from falling down and causing the human or itself damages. This work tries to solve a part of the locomotion problem, which is, the “Gait Generation” methods used to obtain stable walking. Mass concentrated models are used to obtain stable walking motion. Thus the inverted pendulum model and the cart-table model are used to obtain stable walking motion in humanoid robots. In the inverted pendulum model, the mass of the pendulum drives the center of gravity (COG) motion of the humanoid robot while it is walking. It will be detailed that the COG moves like a free ball on a plane under the laws of the pendulum in the field of gravity. While in the cart-table model, the cart drives the COG motion during walking motion. In this case, the cart motion is treated as a servo control system, obtaining its motion from future reference states of the ZMP. The gait generation method proposed has many layers like Global motion, local motion, motion patterns generation, inverse kinematics and inverse dynamics and finally off-line correction. When the input in the gait generation method is the global goal (that is the final configuration of the robot in walking environment), and the output is the joint patterns and ZMP reference patterns. Otherwise, the “Acyclic gait” method is proposed. This method deals with the whole body humanoid robot dynamic step motion from any generic posture to another one when the input is the initial and goal robot states (that is the initial and goal joint angles) and the output is the joint and ZMP reference patterns. Successful simulation and actual results have been obtained with the Rh- 1 humanoid robot developed in the Robotics lab (Universidad Carlos III de Madrid, Spain) and the innovative motion called “Acyclic gait” implemented in the HRP-2 humanoid robot platform (developed by the AIST and Kawada Industries Inc., Japan). Furthermore, the results, contributions and future works will be discussed

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY89. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number
    corecore