14,970 research outputs found

    Fast Mapping Algorithm for Histogram to Binary Set Conversion

    Get PDF
    Abstract In this paper, a fast binary set mapping (FBSM) algorithm is proposed for expediting the conversion from histograms to binary color sets. In comparison with the original mapping scheme, signi®cant reduction in the computation complexity can be achieved. Such an ecient mapping algorithm justi®es the practical usage of the pre®ltering technique in the application to histogram-based image retrieval systems, especially to searching large image databases.

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    An Integrated Content and Metadata based Retrieval System for Art

    No full text
    In this paper we describe aspects of the Artiste project to develop a distributed content and metadata based analysis, retrieval and navigation system for a number of major European Museums. In particular, after a brief overview of the complete system, we describe the design and evaluation of some of the image analysis algorithms developed to meet the specific requirements of the users from the museums. These include a method for retrievals based on sub images, retrievals based on very low quality images and retrieval using craquelure type

    Error modeling, self-calibration and design of pipelined analog to digital converters

    Get PDF
    Typescript (photocopy).As the field of signal processing accelerates toward the use of high performance digital techniques, there is a growing need for increasingly fast and accurate analog to digital converters. Three highly visible examples of this trend originated in the last decade. The advent of the compact disc revolutionized the way high-fidelity audio is stored, reproduced, recorded and processed. Digital communication links, fiber optic cables and in the near future ISDN networks (Integrated Services Digital Network) are steadily replacing major portions of telephone systems. Finally, video-conferencing, multi-media computing and currently emerging high definition television (HDTV) systems rely more and more on real-time digital data compression and image enhancing techniques. All these applications rely on analog to digital conversion. In the field of digital audio, the required conversion accuracy is high, but the conversion speed limited (16 bits, 2 x 20 kHz signal bandwidth). In the field of image processing, the required accuracy is less, but the data conversion speed high (8-10 bits, 5-20MHz bandwidth). New applications keep pushing for increasing conversion rates and simultaneously higher accuracies. This dissertation discusses new analog to digital converter architectures that could accomplish this. As a consequence of the trend towards digital processing, prominent analog designers throughout the world have engaged in very active research on the topic of data conversion. Unfortunately, literature has not always kept up. At the time of this writing, it seemed rather difficult to find detailed fundamental publications about analog to digital converter design. This dissertation represents a modest attempt to remedy this situation. It is hoped that anyone with a back-ground in analog design could go through this work and pick up the fundamentals of converter operation, as well as a number of more advanced design techniques

    Minimalist design of a robust real-time quantum random number generator

    Full text link
    We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation
    • …
    corecore