134 research outputs found

    A Graphical Model Formulation of Collaborative Filtering Neighbourhood Methods with Fast Maximum Entropy Training

    Full text link
    Item neighbourhood methods for collaborative filtering learn a weighted graph over the set of items, where each item is connected to those it is most similar to. The prediction of a user's rating on an item is then given by that rating of neighbouring items, weighted by their similarity. This paper presents a new neighbourhood approach which we call item fields, whereby an undirected graphical model is formed over the item graph. The resulting prediction rule is a simple generalization of the classical approaches, which takes into account non-local information in the graph, allowing its best results to be obtained when using drastically fewer edges than other neighbourhood approaches. A fast approximate maximum entropy training method based on the Bethe approximation is presented, which uses a simple gradient ascent procedure. When using precomputed sufficient statistics on the Movielens datasets, our method is faster than maximum likelihood approaches by two orders of magnitude.Comment: ICML201

    Transformer-based Map Matching Model with Limited Ground-Truth Data using Transfer-Learning Approach

    Full text link
    In many spatial trajectory-based applications, it is necessary to map raw trajectory data points onto road networks in digital maps, which is commonly referred to as a map-matching process. While most previous map-matching methods have focused on using rule-based algorithms to deal with the map-matching problems, in this paper, we consider the map-matching task from the data-driven perspective, proposing a deep learning-based map-matching model. We build a Transformer-based map-matching model with a transfer learning approach. We generate trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of ground-truth data to minimize the model development cost and reduce the real-to-virtual gap. Three metrics (Average Hamming Distance, F-score, and BLEU) at two levels (point and segment level) are used to evaluate the model performance. The results indicate that the proposed model outperforms existing models. Furthermore, we use the attention weights of the Transformer to plot the map-matching process and find how the model matches the road segments correctly.Comment: 25 pages, 9 figures, 4 table

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop

    Revealing intra-urban spatial structure through an exploratory analysis by combining road network abstraction model and taxi trajectory data

    Full text link
    The unprecedented urbanization in China has dramatically changed the urban spatial structure of cities. With the proliferation of individual-level geospatial big data, previous studies have widely used the network abstraction model to reveal the underlying urban spatial structure. However, the construction of network abstraction models primarily focuses on the topology of the road network without considering individual travel flows along with the road networks. Individual travel flows reflect the urban dynamics, which can further help understand the underlying spatial structure. This study therefore aims to reveal the intra-urban spatial structure by integrating the road network abstraction model and individual travel flows. To achieve this goal, we 1) quantify the spatial interaction relatedness of road segments based on the Word2Vec model using large volumes of taxi trip data, then 2) characterize the road abstraction network model according to the identified spatial interaction relatedness, and 3) implement a community detection algorithm to reveal sub-regions of a city. Our results reveal three levels of hierarchical spatial structures in the Wuhan metropolitan area. This study provides a data-driven approach to the investigation of urban spatial structure via identifying traffic interaction patterns on the road network, offering insights to urban planning practice and transportation management

    Multilevel Delayed Acceptance MCMC with Applications to Hydrogeological Inverse Problems

    Get PDF
    Quantifying the uncertainty of model predictions is a critical task for engineering decision support systems. This is a particularly challenging effort in the context of statistical inverse problems, where the model parameters are unknown or poorly constrained, and where the data is often scarce. Many such problems emerge in the fields of hydrology and hydro--environmental engineering in general, and in hydrogeology in particular. While methods for rigorously quantifying the uncertainty of such problems exist, they are often prohibitively computationally expensive, particularly when the forward model is high--dimensional and expensive to evaluate. In this thesis, I present a Metropolis--Hastings algorithm, namely the Multilevel Delayed Acceptance (MLDA) algorithm, which exploits a hierarchy of forward models of increasing computational cost to significantly reduce the total cost of quantifying the uncertainty of high--dimensional, expensive forward models. The algorithm is shown to be in detailed balance with the posterior distribution of parameters, and the computational gains of the algorithm is demonstrated on multiple examples. Additionally, I present an approach for exploiting a deep neural network as an ultra--fast model approximation in an MLDA model hierarchy. This method is demonstrated in the context of both 2D and 3D groundwater flow modelling. Finally, I present a novel approach to adaptive optimal design of groundwater surveying, in which MLDA is employed to construct the posterior Monte Carlo estimates. This method utilises the posterior uncertainty of the primary problem in conjunction with the expected solution to an adjoint problem to sequentially determine the optimal location of the next datapoint.Engineering and Physical Sciences Research Council (EPSRC)Alan Turing InstituteEngineering and Physical Sciences Research Council (EPSRC

    Hierarchical Variance Reduction Techniques for Monte Carlo Rendering

    Get PDF
    Ever since the first three-dimensional computer graphics appeared half a century ago, the goal has been to model and simulate how light interacts with materials and objects to form an image. The ultimate goal is photorealistic rendering, where the created images reach a level of accuracy that makes them indistinguishable from photographs of the real world. There are many applications ñ visualization of products and architectural designs yet to be built, special effects, computer-generated films, virtual reality, and video games, to name a few. However, the problem has proven tremendously complex; the illumination at any point is described by a recursive integral to which a closed-form solution seldom exists. Instead, computer simulation and Monte Carlo methods are commonly used to statistically estimate the result. This introduces undesirable noise, or variance, and a large body of research has been devoted to finding ways to reduce the variance. I continue along this line of research, and present several novel techniques for variance reduction in Monte Carlo rendering, as well as a few related tools. The research in this dissertation focuses on using importance sampling to pick a small set of well-distributed point samples. As the primary contribution, I have developed the first methods to explicitly draw samples from the product of distant high-frequency lighting and complex reflectance functions. By sampling the product, low noise results can be achieved using a very small number of samples, which is important to minimize the rendering times. Several different hierarchical representations are explored to allow efficient product sampling. In the first publication, the key idea is to work in a compressed wavelet basis, which allows fast evaluation of the product. Many of the initial restrictions of this technique were removed in follow-up work, allowing higher-resolution uncompressed lighting and avoiding precomputation of reflectance functions. My second main contribution is to present one of the first techniques to take the triple product of lighting, visibility and reflectance into account to further reduce the variance in Monte Carlo rendering. For this purpose, control variates are combined with importance sampling to solve the problem in a novel way. A large part of the technique also focuses on analysis and approximation of the visibility function. To further refine the above techniques, several useful tools are introduced. These include a fast, low-distortion map to represent (hemi)spherical functions, a method to create high-quality quasi-random points, and an optimizing compiler for analyzing shaders using interval arithmetic. The latter automatically extracts bounds for importance sampling of arbitrary shaders, as opposed to using a priori known reflectance functions. In summary, the work presented here takes the field of computer graphics one step further towards making photorealistic rendering practical for a wide range of uses. By introducing several novel Monte Carlo methods, more sophisticated lighting and materials can be used without increasing the computation times. The research is aimed at domain-specific solutions to the rendering problem, but I believe that much of the new theory is applicable in other parts of computer graphics, as well as in other fields

    Complex queries and complex data

    Get PDF
    With the widespread availability of wearable computers, equipped with sensors such as GPS or cameras, and with the ubiquitous presence of micro-blogging platforms, social media sites and digital marketplaces, data can be collected and shared on a massive scale. A necessary building block for taking advantage from this vast amount of information are efficient and effective similarity search algorithms that are able to find objects in a database which are similar to a query object. Due to the general applicability of similarity search over different data types and applications, the formalization of this concept and the development of strategies for evaluating similarity queries has evolved to an important field of research in the database community, spatio-temporal database community, and others, such as information retrieval and computer vision. This thesis concentrates on a special instance of similarity queries, namely k-Nearest Neighbor (kNN) Queries and their close relative, Reverse k-Nearest Neighbor (RkNN) Queries. As a first contribution we provide an in-depth analysis of the RkNN join. While the problem of reverse nearest neighbor queries has received a vast amount of research interest, the problem of performing such queries in a bulk has not seen an in-depth analysis so far. We first formalize the RkNN join, identifying its monochromatic and bichromatic versions and their self-join variants. After pinpointing the monochromatic RkNN join as an important and interesting instance, we develop solutions for this class, including a self-pruning and a mutual pruning algorithm. We then evaluate these algorithms extensively on a variety of synthetic and real datasets. From this starting point of similarity queries on certain data we shift our focus to uncertain data, addressing nearest neighbor queries in uncertain spatio-temporal databases. Starting from the traditional definition of nearest neighbor queries and a data model for uncertain spatio-temporal data, we develop efficient query mechanisms that consider temporal dependencies during query evaluation. We define intuitive query semantics, aiming not only at returning the objects closest to the query but also their probability of being a nearest neighbor. After theoretically evaluating these query predicates we develop efficient querying algorithms for the proposed query predicates. Given the findings of this research on nearest neighbor queries, we extend these results to reverse nearest neighbor queries. Finally we address the problem of querying large datasets containing set-based objects, namely image databases, where images are represented by (multi-)sets of vectors and additional metadata describing the position of features in the image. We aim at reducing the number of kNN queries performed during query processing and evaluate a modified pipeline that aims at optimizing the query accuracy at a small number of kNN queries. Additionally, as feature representations in object recognition are moving more and more from the real-valued domain to the binary domain, we evaluate efficient indexing techniques for binary feature vectors.Nicht nur durch die Verbreitung von tragbaren Computern, die mit einer Vielzahl von Sensoren wie GPS oder Kameras ausgestattet sind, sondern auch durch die breite Nutzung von Microblogging-Plattformen, Social-Media Websites und digitale Marktplätze wie Amazon und Ebay wird durch die User eine gigantische Menge an Daten veröffentlicht. Um aus diesen Daten einen Mehrwert erzeugen zu können bedarf es effizienter und effektiver Algorithmen zur Ähnlichkeitssuche, die zu einem gegebenen Anfrageobjekt ähnliche Objekte in einer Datenbank identifiziert. Durch die Allgemeinheit dieses Konzeptes der Ähnlichkeit über unterschiedliche Datentypen und Anwendungen hinweg hat sich die Ähnlichkeitssuche zu einem wichtigen Forschungsfeld, nicht nur im Datenbankumfeld oder im Bereich raum-zeitlicher Datenbanken, sondern auch in anderen Forschungsgebieten wie dem Information Retrieval oder dem Maschinellen Sehen entwickelt. In der vorliegenden Arbeit beschäftigen wir uns mit einem speziellen Anfrageprädikat im Bereich der Ähnlichkeitsanfragen, mit k-nächste Nachbarn (kNN) Anfragen und ihrem Verwandten, den Revers k-nächsten Nachbarn (RkNN) Anfragen. In einem ersten Beitrag analysieren wir den RkNN Join. Obwohl das Problem von reverse nächsten Nachbar Anfragen in den letzten Jahren eine breite Aufmerksamkeit in der Forschungsgemeinschaft erfahren hat, wurde das Problem eine Menge von RkNN Anfragen gleichzeitig auszuführen nicht ausreichend analysiert. Aus diesem Grund formalisieren wir das Problem des RkNN Joins mit seinen monochromatischen und bichromatischen Varianten. Wir identifizieren den monochromatischen RkNN Join als einen wichtigen und interessanten Fall und entwickeln entsprechende Anfragealgorithmen. In einer detaillierten Evaluation vergleichen wir die ausgearbeiteten Verfahren auf einer Vielzahl von synthetischen und realen Datensätzen. Nach diesem Kapitel über Ähnlichkeitssuche auf sicheren Daten konzentrieren wir uns auf unsichere Daten, speziell im Bereich raum-zeitlicher Datenbanken. Ausgehend von der traditionellen Definition von Nachbarschaftsanfragen und einem Datenmodell für unsichere raum-zeitliche Daten entwickeln wir effiziente Anfrageverfahren, die zeitliche Abhängigkeiten bei der Anfragebearbeitung beachten. Zu diesem Zweck definieren wir Anfrageprädikate die nicht nur die Objekte zurückzugeben, die dem Anfrageobjekt am nächsten sind, sondern auch die Wahrscheinlichkeit mit der sie ein nächster Nachbar sind. Wir evaluieren die definierten Anfrageprädikate theoretisch und entwickeln effiziente Anfragestrategien, die eine Anfragebearbeitung zu vertretbaren Laufzeiten gewährleisten. Ausgehend von den Ergebnissen für Nachbarschaftsanfragen erweitern wir unsere Ergebnisse auf Reverse Nachbarschaftsanfragen. Zuletzt behandeln wir das Problem der Anfragebearbeitung bei Mengen-basierten Objekten, die zum Beispiel in Bilddatenbanken Verwendung finden: Oft werden Bilder durch eine Menge von Merkmalsvektoren und zusätzliche Metadaten (zum Beispiel die Position der Merkmale im Bild) dargestellt. Wir evaluieren eine modifizierte Pipeline, die darauf abzielt, die Anfragegenauigkeit bei einer kleinen Anzahl an kNN-Anfragen zu maximieren. Da reellwertige Merkmalsvektoren im Bereich der Objekterkennung immer öfter durch Bitvektoren ersetzt werden, die sich durch einen geringeren Speicherplatzbedarf und höhere Laufzeiteffizienz auszeichnen, evaluieren wir außerdem Indexierungsverfahren für Binärvektoren
    • …
    corecore