1,587 research outputs found

    Efficient training algorithms for HMMs using incremental estimation

    Get PDF
    Typically, parameter estimation for a hidden Markov model (HMM) is performed using an expectation-maximization (EM) algorithm with the maximum-likelihood (ML) criterion. The EM algorithm is an iterative scheme that is well-defined and numerically stable, but convergence may require a large number of iterations. For speech recognition systems utilizing large amounts of training material, this results in long training times. This paper presents an incremental estimation approach to speed-up the training of HMMs without any loss of recognition performance. The algorithm selects a subset of data from the training set, updates the model parameters based on the subset, and then iterates the process until convergence of the parameters. The advantage of this approach is a substantial increase in the number of iterations of the EM algorithm per training token, which leads to faster training. In order to achieve reliable estimation from a small fraction of the complete data set at each iteration, two training criteria are studied; ML and maximum a posteriori (MAP) estimation. Experimental results show that the training of the incremental algorithms is substantially faster than the conventional (batch) method and suffers no loss of recognition performance. Furthermore, the incremental MAP based training algorithm improves performance over the batch versio

    Semi-continuous hidden Markov models for speech recognition

    Get PDF

    Identification of Non-Linguistic Speech Features

    Get PDF
    Over the last decade technological advances have been made which enable us to envision real-world applications of speech technologies. It is possible to foresee applications where the spoken query is to be recognized without even prior knowledge of the language being spoken, for example, information centers in public places such as train stations and airports. Other applications may require accurate identification of the speaker for security reasons, including control of access to confidential information or for telephone-based transactions. Ideally, the speaker's identity can be verified continually during the transaction, in a manner completely transparent to the user. With these views in mind, this paper presents a unified approach to identifying non-linguistic speech features from the recorded signal using phone-based acoustic likelihoods. This technique is shown to be effective for text-independent language, sex, and speaker identification and can enable better and more friendly human-machine interaction. With 2s of speech, the language can be identified with better than 99 % accuracy. Error in sex-identification is about 1% on a per-sentence basis, and speaker identification accuracies of 98.5 % on TIMIT (168 speakers) and 99.2 % on BREF (65 speakers), were obtained with one utterance per speaker, and 100 % with 2 utterances for both corpora. An experiment using unsupervised adaptation for speaker identification on the 168 TIMIT speakers had the same identification accuracies obtained with supervised adaptation

    On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate

    Get PDF
    We present a framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities. The QB formulation is based on the theory of recursive Bayesian inference. The QB algorithm is designed to incrementally update the hyperparameters of the approximate posterior distribution and the CDHMM parameters simultaneously. By further introducing a simple forgetting mechanism to adjust the contribution of previously observed sample utterances, the algorithm is adaptive in nature and capable of performing an online adaptive learning using only the current sample utterance. It can, thus, be used to cope with the time-varying nature of some acoustic and environmental variabilities, including mismatches caused by changing speakers, channels, and transducers. As an example, the QB learning framework is applied to on-line speaker adaptation and its viability is confirmed in a series of comparative experiments using a 26-letter English alphabet vocabulary.published_or_final_versio

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Continuous Density Hidden Markov Model for Hindi Speech Recognition

    Get PDF
    State of the art automatic speech recognitionsystem uses Mel frequency cepstral coefficients as featureextractor along with Gaussian mixture model for acousticmodeling but there is no standard value to assign number ofmixture component in speech recognition process.Currentchoice of mixture component is arbitrary with littlejustification. Also the standard set for European languagescan not be used in Hindi speech recognition due to mismatchin database size of the languages.Parameter estimation withtoo many or few component may inappropriately estimatethe mixture model. Therefore, number of mixture isimportant for initial estimation of expectation maximizationprocess. In this research work, the authors estimate numberof Gaussian mixture component for Hindi database basedupon the size of vocabulary.Mel frequency cepstral featureand perceptual linear predictive feature along with itsextended variations with delta-delta-delta feature have beenused to evaluate this number based on optimal recognitionscore of the system . Comparitive analysis of recognitionperformance for both the feature extraction methods onmedium size Hindi database is also presented in thispaper.HLDA has been used as feature reduction techniqueand also its impact on the recognition score has beenhighlighted

    Hidden Markov models and neural networks for speech recognition

    Get PDF
    The Hidden Markov Model (HMMs) is one of the most successful modeling approaches for acoustic events in speech recognition, and more recently it has proven useful for several problems in biological sequence analysis. Although the HMM is good at capturing the temporal nature of processes such as speech, it has a very limited capacity for recognizing complex patterns involving more than first order dependencies in the observed data sequences. This is due to the first order state process and the assumption of state conditional independence between observations. Artificial Neural Networks (NNs) are almost the opposite: they cannot model dynamic, temporally extended phenomena very well, but are good at static classification and regression tasks. Combining the two frameworks in a sensible way can therefore lead to a more powerful model with better classification abilities. The overall aim of this work has been to develop a probabilistic hybrid of hidden Markov models and neural networks and ..
    • …
    corecore