26,744 research outputs found

    Data spectroscopy: Eigenspaces of convolution operators and clustering

    Full text link
    This paper focuses on obtaining clustering information about a distribution from its i.i.d. samples. We develop theoretical results to understand and use clustering information contained in the eigenvectors of data adjacency matrices based on a radial kernel function with a sufficiently fast tail decay. In particular, we provide population analyses to gain insights into which eigenvectors should be used and when the clustering information for the distribution can be recovered from the sample. We learn that a fixed number of top eigenvectors might at the same time contain redundant clustering information and miss relevant clustering information. We use this insight to design the data spectroscopic clustering (DaSpec) algorithm that utilizes properly selected eigenvectors to determine the number of clusters automatically and to group the data accordingly. Our findings extend the intuitions underlying existing spectral techniques such as spectral clustering and Kernel Principal Components Analysis, and provide new understanding into their usability and modes of failure. Simulation studies and experiments on real-world data are conducted to show the potential of our algorithm. In particular, DaSpec is found to handle unbalanced groups and recover clusters of different shapes better than the competing methods.Comment: Published in at http://dx.doi.org/10.1214/09-AOS700 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Embed and Conquer: Scalable Embeddings for Kernel k-Means on MapReduce

    Full text link
    The kernel kk-means is an effective method for data clustering which extends the commonly-used kk-means algorithm to work on a similarity matrix over complex data structures. The kernel kk-means algorithm is however computationally very complex as it requires the complete data matrix to be calculated and stored. Further, the kernelized nature of the kernel kk-means algorithm hinders the parallelization of its computations on modern infrastructures for distributed computing. In this paper, we are defining a family of kernel-based low-dimensional embeddings that allows for scaling kernel kk-means on MapReduce via an efficient and unified parallelization strategy. Afterwards, we propose two methods for low-dimensional embedding that adhere to our definition of the embedding family. Exploiting the proposed parallelization strategy, we present two scalable MapReduce algorithms for kernel kk-means. We demonstrate the effectiveness and efficiency of the proposed algorithms through an empirical evaluation on benchmark data sets.Comment: Appears in Proceedings of the SIAM International Conference on Data Mining (SDM), 201

    Batch kernel SOM and related Laplacian methods for social network analysis

    Get PDF
    Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts
    corecore