4,314 research outputs found

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    K-means based clustering and context quantization

    Get PDF

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Efficient Semidefinite Spectral Clustering via Lagrange Duality

    Full text link
    We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.Comment: 13 page
    corecore