40 research outputs found

    Quality of Experience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-prediction

    Get PDF
    The exorbitant increase in the computational complexity of modern video coding standards, such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained consumer electronic devices. For instance, the brute force evaluation of all possible combinations of available coding modes and quadtree-based coding structure in HEVC to determine the optimum set of coding parameters for a given content demand a substantial amount of computational and energy resources. Thus, the resource requirements for real time operation of HEVC has become a contributing factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU) size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible coding mode combinations in HEVC. The experimental results demonstrate an average encoding time reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed videos of the proposed algorithm compared to state-of-the-art approaches

    Fast Intra-frame Coding Algorithm for HEVC Based on TCM and Machine Learning

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. Compared with the previous standard H.264/AVC, it can reduce the bit-rate by around 50% while maintaining the same perceptual quality. This performance gain on compression is achieved mainly by supporting larger Coding Unit (CU) size and more prediction modes. However, since the encoder needs to traverse all possible choices to mine out the best way of encoding data, this large flexibility on block size and prediction modes has caused a tremendous increase in encoding time. In HEVC, intra-frame coding is an important basis, and it is widely used in all configurations. Therefore, fast algorithms are always required to alleviate the computational complexity of HEVC intra-frame coding. In this thesis, a fast intra-frame coding algorithm based on machine learning is proposed to predict CU decisions. Hence the computational complexity can be significantly reduced with negligible loss in the coding efficiency. Machine learning models like Bayes decision, Support Vector Machine (SVM) are used as decision makers while the Laplacian Transparent Composite Model (LPTCM) is selected as a feature extraction tool. In the main version of the proposed algorithm, a set of features named with Summation of Binarized Outlier Coefficients (SBOC) is extracted to train SVM models. An online training structure and a performance control method are introduced to enhance the robustness of decision makers. When applied on All Intra Main (AIM) full test and compared with HM 16.3, the main version of the proposed algorithm can achieve, on average, 48% time reduction with 0.78% BD-rate increase. Through adjusting parameter settings, the algorithm can change the trade-off between encoding time and coding efficiency, which can generate a performance curve to meet different requirements. By testing different methods on the same machine, the performance of proposed method has outperformed all CU decision based HEVC fast intra-frame algorithms in the benchmarks

    Fast Intra-frame Coding Algorithm for HEVC Based on TCM and Machine Learning

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. Compared with the previous standard H.264/AVC, it can reduce the bit-rate by around 50% while maintaining the same perceptual quality. This performance gain on compression is achieved mainly by supporting larger Coding Unit (CU) size and more prediction modes. However, since the encoder needs to traverse all possible choices to mine out the best way of encoding data, this large flexibility on block size and prediction modes has caused a tremendous increase in encoding time. In HEVC, intra-frame coding is an important basis, and it is widely used in all configurations. Therefore, fast algorithms are always required to alleviate the computational complexity of HEVC intra-frame coding. In this thesis, a fast intra-frame coding algorithm based on machine learning is proposed to predict CU decisions. Hence the computational complexity can be significantly reduced with negligible loss in the coding efficiency. Machine learning models like Bayes decision, Support Vector Machine (SVM) are used as decision makers while the Laplacian Transparent Composite Model (LPTCM) is selected as a feature extraction tool. In the main version of the proposed algorithm, a set of features named with Summation of Binarized Outlier Coefficients (SBOC) is extracted to train SVM models. An online training structure and a performance control method are introduced to enhance the robustness of decision makers. When applied on All Intra Main (AIM) full test and compared with HM 16.3, the main version of the proposed algorithm can achieve, on average, 48% time reduction with 0.78% BD-rate increase. Through adjusting parameter settings, the algorithm can change the trade-off between encoding time and coding efficiency, which can generate a performance curve to meet different requirements. By testing different methods on the same machine, the performance of proposed method has outperformed all CU decision based HEVC fast intra-frame algorithms in the benchmarks

    Application of a Bi-Geometric Transparent Composite Model to HEVC: Residual Data Modelling and Rate Control

    Get PDF
    Among various transforms, the discrete cosine transform (DCT) is the most widely used one in multimedia compression technologies for different image or video coding standards. During the development of image or video compression, a lot of interest has been attracted to understand the statistical distribution of DCT coefficients, which would be useful to design compression techniques, such as quantization, entropy coding and rate control. Recently, a bi-geometric transparent composite model (BGTCM) has been developed to provide modelling of distribution of DCT coefficients with both simplicity and accuracy. It has been reported that for DCT coefficients obtained from original images, which is applied in image coding, a transparent composite model (TCM) can provide better modelling than Laplacian. In video compression, such as H.264/AVC, DCT is performed on residual images obtained after prediction with different transform sizes. What's more, in high efficiency video coding(HEVC) which is the newest video coding standard, besides DCT as the main transform tool, discrete sine transform (DST) and transform skip (TS) techniques are possibly performed on residual data in small blocks. As such, the distribution of transformed residual data differs from that of transformed original image data. In this thesis, the distribution of coefficients, including those from all DCT, DST and TS blocks, is analysed based on BGTCM. To be specific, firstly, the distribution of all the coefficients from the whole frame is examined. Secondly, in HEVC, the entropy coding is implemented based on the new encoding concept, coefficient group (CG) with size 4*4, where quantized coefficients are encoded with context models based on their scan indices in each CG. To simulate the encoding process, coefficients at the same scan indices among different CGs are grouped together to form a set. Distribution of coefficients in each set is analysed. Based on our result, BGTCM is better than other widely used distributions, such as Laplacian and Cauchy distributions, in both x^2 and KL-divergence testing. Furthermore, unlike the way based on Laplacian and Cauchy distribution, the BGTCM can be used to model rate-quantization (R-Q) and distortion-quantization (D-Q) models without approximation expressions. R-Q and D-Q models based on BGTCM can reflect the distribution of coefficients, which are important in rate control. In video coding, rate control involves these two models to generate a suitable quantization parameter without multi-passes encoding in order to maintain the coding efficiency and to generate required rate to satisfy rate requirement. In this thesis, based on BGTCM, rate control in HEVC is revised with much increase in coding efficiency and decrease in rate fluctuation in terms of rate variance among frames for constant bit rate requirement.1 yea

    DCT-based Image/Video Compression: New Design Perspectives

    Get PDF
    To push the envelope of DCT-based lossy image/video compression, this thesis is motivated to revisit design of some fundamental blocks in image/video coding, ranging from source modelling, quantization table, quantizers, to entropy coding. Firstly, to better handle the heavy tail phenomenon commonly seen in DCT coefficients, a new model dubbed transparent composite model (TCM) is developed and justified. Given a sequence of DCT coefficients, the TCM first separates the tail from the main body of the sequence, and then uses a uniform distribution to model DCT coefficients in the heavy tail, while using a parametric distribution to model DCT coefficients in the main body. The separation boundary and other distribution parameters are estimated online via maximum likelihood (ML) estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. When the parametric distribution is truncated Laplacian, the resulting TCM dubbed Laplacian TCM (LPTCM) not only achieves superior modeling accuracy with low estimation complexity, but also has a good capability of nonlinear data reduction by identifying and separating a DCT coefficient in the heavy tail (referred to as an outlier) from a DCT coefficient in the main body (referred to as an inlier). This in turn opens up opportunities for it to be used in DCT-based image compression. Secondly, quantization table design is revisited for image/video coding where soft decision quantization (SDQ) is considered. Unlike conventional approaches where quantization table design is bundled with a specific encoding method, we assume optimal SDQ encoding and design a quantization table for the purpose of reconstruction. Under this assumption, we model transform coefficients across different frequencies as independently distributed random sources and apply the Shannon lower bound to approximate the rate distortion function of each source. We then show that a quantization table can be optimized in a way that the resulting distortion complies with certain behavior, yielding the so-called optimal distortion profile scheme (OptD). Guided by this new theoretical result, we present an efficient statistical-model-based algorithm using the Laplacian model to design quantization tables for DCT-based image compression. When applied to standard JPEG encoding, it provides more than 1.5 dB performance gain (in PSNR), with almost no extra burden on complexity. Compared with the state-of-the-art JPEG quantization table optimizer, the proposed algorithm offers an average 0.5 dB gain with computational complexity reduced by a factor of more than 2000 when SDQ is off, and a 0.1 dB performance gain or more with 85% of the complexity reduced when SDQ is on. Thirdly, based on the LPTCM and OptD, we further propose an efficient non-predictive DCT-based image compression system, where the quantizers and entropy coding are completely re-designed, and the relative SDQ algorithm is also developed. The proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate vs visual quality. On the other hand, in terms of rate vs objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB on average, with a moderate increase on complexity, and ECEB, the state-of-the-art non-predictive image coding, by 0.75 dB when SDQ is off, with the same level of computational complexity, and by 1 dB when SDQ is on, at the cost of extra complexity. In comparison with H.264 intra coding, our system provides an overall 0.4 dB gain or so, with dramatically reduced computational complexity. It offers comparable or even better coding performance than HEVC intra coding in the high-rate region or for complicated images, but with only less than 5% of the encoding complexity of the latter. In addition, our proposed DCT-based image compression system also offers a multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications

    Fast HEVC Intramode Decision Based on Hybrid Cost Ranking

    Get PDF
    To improve rate-distortion (R-D) performance, high efficiency video coding (HEVC) increases the intraprediction modes with heavy computational load, and thus the intracoding optimization is highly demanded for real-time applications. According to the conditional probabilities of most probable modes and the correlation of potential candidate subsets, this paper proposes a fast HEVC intramode decision scheme based on the hybrid cost ranking which includes both Hadamard cost and rate-distortion cost. The proposed scheme utilizes the coded results of the modified rough mode decision and the neighboring prediction units so as to obtain a potential candidate subset and then conditionally selects the optimal mode through early likelihood decision and hybrid cost ranking. By the experiment-driven methodology, the proposed scheme implements the early termination if the best mode from the candidate subset is equal to one or two neighboring intramodes. The experimental results demonstrate that the proposed scheme averagely provides about 23.7% encoding speedup with just 0.82% BD-rate loss in comparison with default fast intramode decision in HM16.0. Compared to other fast intramode decision schemes, the proposed scheme also significantly reduces intracoding time while maintaining similar R-D performance for the all-intraconfiguration in HM16.0 Main profile
    corecore