1,882 research outputs found

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario

    In-network quality optimization for adaptive video streaming services

    Get PDF
    HTTP adaptive streaming (HAS) services allow the quality of streaming video to be automatically adapted by the client application in face of network and device dynamics. Due to their advantages compared to traditional techniques, HAS-based protocols are widely used for over-the-top (OTT) video streaming. However, they are yet to be adopted in managed environments, such as ISP networks. A major obstacle is the purely client-driven design of current HAS approaches, which leads to excessive quality oscillations, suboptimal behavior, and the inability to enforce management policies. Moreover, the provider has no control over the quality that is provided, which is essential when offering a managed service. This article tackles these challenges and facilitates the adoption of HAS in managed networks. Specifically, several centralized and distributed algorithms and heuristics are proposed that allow nodes inside the network to steer the HAS client's quality selection process. The algorithms are able to enforce management policies by limiting the set of available qualities for specific clients. Additionally, simulation results show that by coordinating the quality selection process across multiple clients, the proposed algorithms significantly reduce quality oscillations by a factor of five and increase the average delivered video quality by at least 14%

    Dissecting the performance of VR video streaming through the VR-EXP experimentation platform

    Get PDF
    To cope with the massive bandwidth demands of Virtual Reality (VR) video streaming, both the scientific community and the industry have been proposing optimization techniques such as viewport-aware streaming and tile-based adaptive bitrate heuristics. As most of the VR video traffic is expected to be delivered through mobile networks, a major problem arises: both the network performance and VR video optimization techniques have the potential to influence the video playout performance and the Quality of Experience (QoE). However, the interplay between them is neither trivial nor has it been properly investigated. To bridge this gap, in this article, we introduce VR-EXP, an open-source platform for carrying out VR video streaming performance evaluation. Furthermore, we consolidate a set of relevant VR video streaming techniques and evaluate them under variable network conditions, contributing to an in-depth understanding of what to expect when different combinations are employed. To the best of our knowledge, this is the first work to propose a systematic approach, accompanied by a software toolkit, which allows one to compare different optimization techniques under the same circumstances. Extensive evaluations carried out using realistic datasets demonstrate that VR-EXP is instrumental in providing valuable insights regarding the interplay between network performance and VR video streaming optimization techniques

    Design and optimisation of a (FA)Q-learning-based HTTP adaptive streaming client

    Get PDF
    In recent years, HTTP (Hypertext Transfer Protocol) adaptive streaming (HAS) has become the de facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are, however, hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (frequency adjusted) Q-learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimise the quality of experience. Furthermore, the client has been optimised both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11-18% in terms of mean opinion score in a wide range of network configurations
    • …
    corecore