634 research outputs found

    High-dimensional hierarchical models and massively parallel computing

    Get PDF
    This work expounds a computationally expedient strategy for the fully Bayesian treatment of high-dimensional hierarchical models. Most steps in a Markov chain Monte Carlo routine for such models are either conditionally independent draws or low-dimensional draws based on summary statistics of parameters at higher levels of the hierarchy. We construct both sets of steps using parallelized algorithms designed to take advantage of the immense parallel computing power of general-purpose graphics processing units while avoiding the severe memory transfer bottleneck. We apply our strategy to RNA-sequencing (RNA-seq) data analysis, a multiple-testing, low-sample-size scenario where hierarchical models provide a way to borrow information across genes. Our approach is solidly tractable, and it performs well under several metrics of estimation, posterior inference, and gene detection. Best-case-scenario empirical Bayes counterparts perform equally well, lending support to existing empirical Bayes approaches in RNA-seq. Finally, we attempt to improve the robustness of estimation and inference of our RNA-seq model using alternate hierarchical distributions

    Systems level investigation of the genetic basis of bovine muscle growth and development

    Get PDF
    Skeletal muscle growth is an economically and biologically important trait for livestock raised for meat production. As such, there is great interest in understanding the underlying genomic architecture influencing muscle growth and development. In spite of this, relatively little is known about the genes or biological processes regulating bovine muscle growth. In this thesis, several approaches were undertaken in order to elucidate some of the mechanisms which may be controlling bovine muscle growth and development. The first objective of this thesis was the development of a novel software tool (SNPdat) for the rapid and comprehensive annotation of SNP data for any organism with a draft sequence and annotation. SNPdat was subsequently utilised in chapters 3 and 6 to facilitate the identification of candidate genes and regions involved in bovine muscle growth. In chapter 4, a number of metrics were explored for their usefulness in assessing convergence of a Markov Chain using a Bayesian approach used in genetic prediction. The need to adequately assess convergence using multiple metrics is addressed and recommendations put forward. These recommendations were then implemented in chapter 3. In addition, three separate investigations of bovine muscle growth and development were performed. In chapter 3, a genome-wide association study was performed to identify regions of the bovine genome associated with four economically important carcass traits. This was followed by an examination of the transcriptional responses in muscle tissue of animals undergoing dietary restriction and compensatory growth (chapter 5). Finally, using high-throughput DNA sequencing, a candidate list of 200 genes was interrogated to identify genes which may be evolving at different rates, and under evolutionary selection pressure, in beef compared to dairy animals (chapter 6). A number of genes and biological pathways were found to be involved in traits related to bovine muscle growth, several of which were identified in more than one study

    Bayesian statistics and modelling

    Get PDF
    Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models to deriving inference, model checking and refinement. We discuss the importance of prior and posterior predictive checking, selecting a proper technique for sampling from a posterior distribution, variational inference and variable selection. Examples of successful applications of Bayesian analysis across various research fields are provided, including in social sciences, ecology, genetics, medicine and more. We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis on artificial intelligence, a major goal in the next decade

    Expanding the application of haplotype-based genomic predictions to the wild: A case of antibody response against Teladorsagia circumcincta in Soay sheep

    Get PDF
    BackgroundGenomic prediction of breeding values (GP) has been adopted in evolutionary genomic studies to uncover microevolutionary processes of wild populations or improve captive breeding strategies. While recent evolutionary studies applied GP with individual single nucleotide polymorphism (SNP), haplotype-based GP could outperform individual SNP predictions through better capturing the linkage disequilibrium (LD) between the SNP and quantitative trait loci (QTL). This study aimed to evaluate the accuracy and bias of haplotype-based GP of immunoglobulin (Ig) A (IgA), IgE, and IgG against Teladorsagia circumcincta in lambs of an unmanaged sheep population (Soay breed) based on Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian [BayesA, BayesB, BayesC pi, Bayesian Lasso (BayesL), and BayesR] methods.ResultsThe accuracy and bias of GPs using SNP, haplotypic pseudo-SNP from blocks with different LD thresholds (0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.00), or the combinations of pseudo-SNPs and non-LD clustered SNPs were obtained. Across methods and marker sets, higher ranges of genomic estimated breeding values (GEBV) accuracies were observed for IgA (0.20 to 0.49), followed by IgE (0.08 to 0.20) and IgG (0.05 to 0.14). Considering the methods evaluated, up to 8% gains in GP accuracy of IgG were achieved using pseudo-SNPs compared to SNPs. Up to 3% gain in GP accuracy for IgA was also obtained using the combinations of the pseudo-SNPs with non-clustered SNPs in comparison to fitting individual SNP. No improvement in GP accuracy of IgE was observed using haplotypic pseudo-SNPs or their combination with non-clustered SNPs compared to individual SNP. Bayesian methods outperformed GBLUP for all traits. Most scenarios yielded lower accuracies for all traits with an increased LD threshold. GP models using haplotypic pseudo-SNPs predicted less-biased GEBVs mainly for IgG. For this trait, lower bias was observed with higher LD thresholds, whereas no distinct trend was observed for other traits with changes in LD.ConclusionsHaplotype information improves GP performance of anti-helminthic antibody traits of IgA and IgG compared to fitting individual SNP. The observed gains in the predictive performances indicate that haplotype-based methods could benefit GP of some traits in wild animal populations

    The discovery of novel recessive genetic disorders in dairy cattle : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at AL Rae Centre of Genetics and Breeding, Massey University, Palmerston North, New Zealand

    Get PDF
    The selection of desirable characteristics in livestock has resulted in the transmission of advantageous genetic variants for generations. The advent of artificial insemination has accelerated the propagation of these advantageous genetic variants and led to tremendous advances in animal productivity. However, this intensive selection has led to the rapid uptake of deleterious alleles as well. Recently, a recessive mutation in the GALNT2 gene was identified to dramatically impair growth and production traits in dairy cattle causing small calf syndrome. The research presented here seeks to further investigate the presence and impact of recessive mutations in dairy cattle. A primary aim of genetics is to identify causal variants and understand how they act to manipulate a phenotype. As datasets have expanded, larger analyses are now possible and statistical methods to discover causal mutations have become commonplace. One such method, the genome-wide association study (GWAS), presents considerable exploratory utility in identifying quantitative trait loci (QTL) and causal mutations. GWAS' have predominantly focused on identifying additive genetic effects assuming that each allele at a locus acts independently of the other, whereas non-additive effects including dominant, recessive, and epistatic effects have been neglected. Here, we developed a single-locus non-additive GWAS model intended for the detection of dominant and recessive genetic mechanisms. We applied our non-additive GWAS model to growth, developmental, and lactation phenotypes in dairy cattle. We identified several candidate causal mutations that are associated with moderate to large deleterious recessive disorders of animal welfare and production. These mutations included premature-stop (MUS81, ITGAL, LRCH4, RBM34), splice disrupting (FGD4, GALNT2), and missense (PLCD4, MTRF1, DPF2, DOCK8, SLC25A4, KIAA0556, IL4R) variants, and these occur at surprisingly high frequencies in cattle. We further investigated these candidates for anatomical, molecular, and metabolic phenotypes to understand how these disorders might manifest. In some cases, these mutations were analogous to disorder-causing mutations in other species, these included: Coffin-Siris syndrome (DPF2); Charcot Marie Tooth disease (FGD4); a congenital disorder of glycosylation (GALNT2); hyper Immunoglobulin-E syndrome (DOCK8); Joubert syndrome (KIAA0556); and mitochondrial disease (SLC25A4). These discoveries demonstrate that deleterious recessive mutations exist in dairy cattle at remarkably high frequencies and we are able to detect these disorders through modern genotyping and phenotyping capabilities. These are important findings that can be used to improve the health and productivity of dairy cattle in New Zealand and internationally

    Genealogy Reconstruction: Methods and applications in cancer and wild populations

    Get PDF
    Genealogy reconstruction is widely used in biology when relationships among entities are studied. Phylogenies, or evolutionary trees, show the differences between species. They are of profound importance because they help to obtain better understandings of evolutionary processes. Pedigrees, or family trees, on the other hand visualize the relatedness between individuals in a population. The reconstruction of pedigrees and the inference of parentage in general is now a cornerstone in molecular ecology. Applications include the direct infer- ence of gene flow, estimation of the effective population size and parameters describing the population’s mating behaviour such as rates of inbreeding. In the first part of this thesis, we construct genealogies of various types of cancer. Histopatho- logical classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date, there is no objective systematic method to categorize tumor subtypes by maturation. We introduce a novel algorithm to rank tumor subtypes according to the dis- similarity of their gene expression from that of stem cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with expression data of leukemia and liposarcoma subtypes and then apply it to a broader group of sarcomas and of breast cancer subtypes. This ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based tool to analyze the differentiation status of human tumors. In contrast to asexually reproducing cancer cell populations, pedigrees of sexually reproduc- ing populations cannot be represented by phylogenetic trees. Pedigrees are directed acyclic graphs (DAGs) and therefore resemble more phylogenetic networks where reticulate events are indicated by vertices with two incoming arcs. We present a software package for pedigree reconstruction in natural populations using co-dominant genomic markers such as microsatel- lites and single nucleotide polymorphism (SNPs) in the second part of the thesis. If available, the algorithm makes use of prior information such as known relationships (sub-pedigrees) or the age and sex of individuals. Statistical confidence is estimated by Markov chain Monte Carlo (MCMC) sampling. The accuracy of the algorithm is demonstrated for simulated data as well as an empirical data set with known pedigree. The parentage inference is robust even in the presence of genotyping errors. We further demonstrate the accuracy of the algorithm on simulated clonal populations. We show that the joint estimation of parameters of inter- est such as the rate of self-fertilization or clonality is possible with high accuracy even with marker panels of moderate power. Classical methods can only assign a very limited number of statistically significant parentages in this case and would therefore fail. The method is implemented in a fast and easy to use open source software that scales to large datasets with many thousand individuals.:Abstract v Acknowledgments vii 1 Introduction 1 2 Cancer Phylogenies 7 2.1 Introduction..................................... 7 2.2 Background..................................... 9 2.2.1 PhylogeneticTrees............................. 9 2.2.2 Microarrays................................. 10 2.3 Methods....................................... 11 2.3.1 Datasetcompilation ............................ 11 2.3.2 Statistical Methods and Analysis..................... 13 2.3.3 Comparison of our methodology to other methods . . . . . . . . . . . 15 2.4 Results........................................ 16 2.4.1 Phylogenetic tree reconstruction method. . . . . . . . . . . . . . . . . 16 2.4.2 Comparison of tree reconstruction methods to other algorithms . . . . 28 2.4.3 Systematic analysis of methods and parameters . . . . . . . . . . . . . 30 2.5 Discussion...................................... 32 3 Wild Pedigrees 35 3.1 Introduction..................................... 35 3.2 The molecular ecologist’s tools of the trade ................... 36 3.2.1 3.2.2 3.2.3 3.2.1 Sibship inference and parental reconstruction . . . . . . . . . . . . . . 37 3.2.2 Parentage and paternity inference .................... 39 3.2.3 Multigenerational pedigree reconstruction . . . . . . . . . . . . . . . . 40 3.3 Background..................................... 40 3.3.1 Pedigrees .................................. 40 3.3.2 Genotypes.................................. 41 3.3.3 Mendelian segregation probability .................... 41 3.3.4 LOD Scores................................. 43 3.3.5 Genotyping Errors ............................. 43 3.3.6 IBD coefficients............................... 45 3.3.7 Bayesian MCMC.............................. 46 3.4 Methods....................................... 47 3.4.1 Likelihood Model.............................. 47 3.4.2 Efficient Likelihood Calculation...................... 49 3.4.3 Maximum Likelihood Pedigree ...................... 51 3.4.4 Full siblings................................. 52 3.4.5 Algorithm.................................. 53 3.4.6 Missing Values ............................... 56 3.4.7 Allelefrequencies.............................. 58 3.4.8 Rates of Self-fertilization.......................... 60 3.4.9 Rates of Clonality ............................. 60 3.5 Results........................................ 61 3.5.1 Real Microsatellite Data.......................... 61 3.5.2 Simulated Human Population....................... 62 3.5.3 SimulatedClonalPlantPopulation.................... 64 3.6 Discussion...................................... 71 4 Conclusions 77 A FRANz 79 A.1 Availability ..................................... 79 A.2 Input files...................................... 79 A.2.1 Maininputfile ............................... 79 A.2.2 Knownrelationships ............................ 80 A.2.3 Allele frequencies.............................. 81 A.2.4 Sampling locations............................. 82 A.3 Output files..................................... 83 A.4 Web 2.0 Interface.................................. 86 List of Figures 87 List of Tables 88 List Abbreviations 90 Bibliography 92 Curriculum Vitae

    Investigating the Epidemiology of bovine Tuberculosis in the European Badger

    Get PDF
    Global health is becoming increasingly reliant on our understanding and management of wildlife disease. An estimated 60% of emerging infectious diseases in humans are zoonotic and with human-wildlife interactions set to increase as populations rise and we expand further into wild habitats there is pressure to seek modelling frameworks that enable a deeper understanding of natural systems. Survival and mortality are fundamental parameters of interest when investigating the impact of disease with far reaching implications for species conservation, management and control. Survival analysis has traditionally been dominated by non- and semi-parametric methods but these can sometimes miss subtle yet important dynamics. Survival and mortality trajectory analysis can alleviate some of these problems by fitting fully parametric functions that describe lifespan patterns of mortality and survival. In the first part of this thesis we investigate the use of survival and mortality trajectories in epidemiology and uncover novel patterns of age-, sex- and infection-specific mortality in a wild population of European badgers (Meles meles) naturally infected with Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). Limitations of dedicated software packages to conduct such analyses led us to investigate alternative methods to build models from first principles and we found the NIMBLE package to offer an attractive blend of flexibility and speed. We create a novel parameterisation of the Siler model to enable more flexible model specification but encounter the common problem of competing models having comparable fits to the data. Multi-model inference approaches can alleviate some of these issues but require efficient methods to carry out model comparisons; we present an approach based on the estimation of the marginal likelihood through importance sampling and demonstrate its application through a series of simulation- and case-studies. The approach works well for both census and capture-mark-recapture (CMR) data, both of which are common within ecological research, but we uncover challenges in recording and modelling early life mortality dynamics that occur as a result of the CMR sampling process. The final part of the thesis looks at another alternative approach for model comparison that doesn’t require direct estimation of the marginal likelihood, Reversible Jump Markov Chain Monte Carlo (RJMCMC), which is particularly efficient when models to be compared are nested and the problem can reduce to one of variable selection. In the final chapter we carry out an investigation of age-, sex-, infection- and inbreeding-specific variation in survival and mortality in a wild population of European badgers naturally infected with bovine Tuberculosis. Using the methods and knowledge presented through the earlier chapters of this thesis we uncover patterns of mortality consistent with both the mutation accumulation and antagonistic pleiotropy theories of senescence but most interestingly uncover antagonistic pleiotropic effects of inbreeding on age-specific mortality in a wild population for the first time. This thesis provides a number of straightforward approaches to Bayesian survival analysis that are widely applicable to ecological research and can offer greater insight and uncover subtle patterns of survival and mortality that traditional methods can overlook. Our investigation into the epidemiology of bovine Tuberculosis and in particular the effects of inbreeding have far-reaching implications for the control of this disease. This research can also inform future conservation efforts and management strategies as all species are likely to be at increasing risk of inbreeding in an age of dramatic global change, rapid habitat loss and isolation

    Using an evolutionary algorithm and parallel computing for haplotyping in a general complex pedigree with multiple marker loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haplotype reconstruction is important in linkage mapping and association mapping of quantitative trait loci (QTL). One widely used statistical approach for haplotype reconstruction is simulated annealing (SA), implemented in SimWalk2. However, the algorithm needs a very large number of sequential iterations, and it does not clearly show if convergence of the likelihood is obtained.</p> <p>Results</p> <p>An evolutionary algorithm (EA) is a good alternative whose convergence can be easily assessed during the process. It is feasible to use a powerful parallel-computing strategy with the EA, increasing the computational efficiency. It is shown that the EA can be ~4 times faster and gives more reliable estimates than SimWalk2 when using 4 processors. In addition, jointly updating dependent variables can increase the computational efficiency up to ~2 times. Overall, the proposed method with 4 processors increases the computational efficiency up to ~8 times compared to SimWalk2. The efficiency will increase more with a larger number of processors.</p> <p>Conclusion</p> <p>The use of the evolutionary algorithm and the joint updating method can be a promising tool for haplotype reconstruction in linkage and association mapping of QTL.</p

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio
    • …
    corecore