181,339 research outputs found

    Three-dimensional block matching using orthonormal tree-structured haar transform for multichannel images

    Get PDF
    Multichannel images, i.e., images of the same object or scene taken in different spectral bands or with different imaging modalities/settings, are common in many applications. For example, multispectral images contain several wavelength bands and hence, have richer information than color images. Multichannel magnetic resonance imaging and multichannel computed tomography images are common in medical imaging diagnostics, and multimodal images are also routinely used in art investigation. All the methods for grayscale images can be applied to multichannel images by processing each channel/band separately. However, it requires vast computational time, especially for the task of searching for overlapping patches similar to a given query patch. To address this problem, we propose a three-dimensional orthonormal tree-structured Haar transform (3D-OTSHT) targeting fast full search equivalent for three-dimensional block matching in multichannel images. The use of a three-dimensional integral image significantly saves time to obtain the 3D-OTSHT coefficients. We demonstrate superior performance of the proposed block matching

    New Motion Estimation Algorithm and Its Block-Matching Criteria Using Low-Resolution Quantization

    Get PDF
    We propose a new motion estimation algorithm and its block-matching criteria using low-resolution quantization. The proposed algorithm reduces both the huge computational cost of the full search algorithm and the performance degradation of the fast algorithms by matching the low-resolution images. Two search steps called the lowresolution search and the full-resolution search are employed. Simulation results show that the PSNR of the proposed algorithm is superior to those of the 4:1 alternate subsampling algorithm with less computational cost. Its computational cost is 1/38.1 of the full search algorithm

    Block Based Motion Vector Estimation Using FUHS16, UHDS16 and UHDS8 Algorithms for Video Sequence

    Get PDF
    Block-matching algorithm is the most common technique applied in block-based motion estimation technique. There are several block-matching algorithm based on block-based motion estimation techniques have been developed. Full search (FS), three step search (TSS), new three step search (NTSS), diamond search (DS) and hexagon based search (HS) are the most well known block-matching algorithm. These techniques are applied to video sequences to remove the temporal redundancy for compression purposes and to gauge the motion vector estimation. In addition, the mentioned block-matching algorithms are the baseline techniques that have been used to further develop all the enhanced or improved algorithms. In order to develop the proposed methods, the baseline techniques are studied to develop the proposed algorithms. This chapter proposes modelling of fast unrestricted hexagon search (FUHS16) and unrestricted hexagon-diamond search (UHDS16) algorithms for motion vector estimation, which is based on the theory and application of block-based motion estimation. Both of these algorithms are designed using 16 × 16 block size. In particular, the motion vector estimation, quality performance, computational complexity, and elapsed processing time are emphasised. These parameters have been used to measure the experimental results. It is the aim of this study that this work provides a common framework with which to evaluate and understand block-based matching motion estimation performance. On the theoretical side, four fundamental issues are explored: (1) division of frame, (2) basic block-based matching, (3) motion vector estimation, and (4) block-matching algorithm development. Various existing block-matching motion estimation algorithms have been analysed to develop the fundamental research. Based on the theoretical and fundamental research analysis the FUHS16 and UHDS16 algorithms using 16 × 16 block-based motion estimation formulations were developed. To improve the UHDS16 algorithm, 8 × 8 block-matching technique has been tested. The 8 × 8 block-matching technique is known as UHDS8. The results show positive improvements. From an application perspective, the UHDS8 algorithm efficiently captured the motion vectors in many video sequences. For example, in video compression, the use of motion vectors on individual macro-blocks optimized the motion vector information. The UHDS8 algorithm also offers improvement in terms of image quality performance, computational complexity and elapsed processing time. Thus, this chapter offers contributions in certain areas such as reducing the mechanism of computational complexity in estimating the motion from the video sequences. In particular, the FUHS16, UHDS16 and UHDS8 algorithms were developed to estimate the motion vectors field in the video sequences. Theoretical analysis block-based matching criteria are adapted to FUHS16, UHDS16 and UHDS8 algorithms, which are based on search points technique. Basically, the proposed of FUHS16, UHDS16 and UHDS8 algorithm produces the best motion vector estimation finding based on the block-based matching criteria. Besides that, the UHDS8 algorithm also improves the image quality performances and the search points in terms of the computational complexity. Overall, the study shows that the UHDS8 algorithm produces better results compared to the FUHS16 and UHDS16 algorithm

    Block matching algorithm for motion estimation based on Artificial Bee Colony (ABC)

    Full text link
    Block matching (BM) motion estimation plays a very important role in video coding. In a BM approach, image frames in a video sequence are divided into blocks. For each block in the current frame, the best matching block is identified inside a region of the previous frame, aiming to minimize the sum of absolute differences (SAD). Unfortunately, the SAD evaluation is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be approached as an optimization problem, where the goal is to find the best matching block within a search space. The simplest available BM method is the full search algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of SAD values for all elements of the search window. Recently, several fast BM algorithms have been proposed to reduce the number of SAD operations by calculating only a fixed subset of search locations at the price of poor accuracy. In this paper, a new algorithm based on Artificial Bee Colony (ABC) optimization is proposed to reduce the number of search locations in the BM process. In our algorithm, the computation of search locations is drastically reduced by considering a fitness calculation strategy which indicates when it is feasible to calculate or only estimate new search locations. Since the proposed algorithm does not consider any fixed search pattern or any other movement assumption as most of other BM approaches do, a high probability for finding the true minimum (accurate motion vector) is expected. Conducted simulations show that the proposed method achieves the best balance over other fast BM algorithms, in terms of both estimation accuracy and computational cost.Comment: 22 Pages. arXiv admin note: substantial text overlap with arXiv:1405.4721, arXiv:1406.448

    Video Coding: Comparison of Block Matching Techniques In Motion Estimation

    Get PDF
    This project is to investigate the advantages of using the various types of block matching methods as a type of motion estimation techniques compared to encoding each frame as a separate static image. As video is continuous media, it is important to maintain its quality and efficiency while compressing it. As the similarity of a frame and the next frame is great, it can be used as the advantage in video coding. This is because, the background of the image will usually stay the same and the only thing that will change is the moving object in that video. In order to achieve this, the author has to develop a program that can accommodate motion compensation and estimation by utilizing the computational for the motion estimation techniques, if applicable. The author will then have to run the program with some test video sequences to compare the performances of different block matching techniques for different types of video sequences. The major types of block matching techniques are Full (Exhaustive) Search, and a Fast Search (Three Step Search) has been chosen for this project. The author has also chosen to work on Quarter Common Intermediate Format (QCIF) video sequences. As the purpose of this project is to investigate the motion estimation technique, only the video frames will be considered and the sound of the actual video will be left out. Experimental results show that MMSE has a better PSNR value than MAD but consume more time and has higher complexity of operation. Block sizes and window sizes also have a significant effect on the predicted image. The Three Step Search has experiments has shown that it has a higher speed ratio as compared to Full Search, but with reduced quality

    Hierarchical motion estimation based on visual patterns for video coding

    Get PDF
    Block matching algorithms(BMAs) are often employed for motion estimation(ME) in video coding. Most conventional fast BMAs treat the ME problem as an optimization problem and suffer heavily from the problem of being trapped at local minima. The full search algorithm(FS), on the other hand, is very time-consuming. Few of them makes use of the information inherent in the images explicitly. We propose a new ME algorithm which can reduce the search range while guaranteeing global optimality in most cases, making use of the edge features. Microblock visual patterns are designed to extract edge information to guide block matching: searching is only carried out at places where the real match most likely happens. The motion field subsampling technique is further employed to get a hierarchical algorithm, which can further double the speed. The proposed algorithms obtain speeds about ten times faster than that of FS with comparable prediction quality.published_or_final_versio

    Classification-Based Adaptive Search Algorithm for Video Motion Estimation

    Get PDF
    A video sequence consists of a series of frames. In order to compress the video for efficient storage and transmission, the temporal redundancy among adjacent frames must be exploited. A frame is selected as reference frame and subsequent frames are predicted from the reference frame using a technique known as motion estimation. Real videos contain a mixture of motions with slow and fast contents. Among block matching motion estimation algorithms, the full search algorithm is known for its superiority in the performance over other matching techniques. However, this method is computationally very extensive. Several fast block matching algorithms (FBMAs) have been proposed in the literature with the aim to reduce computational costs while maintaining desired quality performance, but all these methods are considered to be sub-optimal. No fixed fast block matching algorithm can effi- ciently remove temporal redundancy of video sequences with wide motion contents. Adaptive fast block matching algorithm, called classification based adaptive search (CBAS) has been proposed. A Bayes classifier is applied to classify the motions into slow and fast categories. Accordingly, appropriate search strategy is applied for each class. The algorithm switches between different search patterns according to the content of motions within video frames. The proposed technique outperforms conventional stand-alone fast block matching methods in terms of both peak signal to noise ratio (PSNR) and computational complexity. In addition, a new hierarchical method for detecting and classifying shot boundaries in video sequences is proposed which is based on information theoretic classification (ITC). ITC relies on likelihood of class label transmission of a data point to the data points in its vicinity. ITC focuses on maximizing the global transmission of true class labels and classify the frames into classes of cuts and non-cuts. Applying the same rule, the non-cut frames are also classified into two categories of arbitrary shot frames and gradual transition frames. CBAS is applied on the proposed shot detection method to handle camera or object motions. Experimental evidence demonstrates that our method can detect shot breaks with high accuracy

    ENHANCED COMPUTATION TIME FOR FAST BLOCK MATCHING ALGORITHM

    Get PDF
    Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television (HDTV), CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensated predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50-80% of the video encoding complexity. This technique has been adopted by all of the existing international video coding standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks; each target macroblock of the current frame is compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm were developed to reduce the computation complexity. This thesis focuses on two classifications: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the full search is decreased while the resolution of the predicted frames is the same as for the full search. The second is called the lossy block matching algorithm process, which reduces the computational complexity effectively but the search result’s quality is not the same as for the full search

    Block matching algorithm based on Harmony Search optimization for motion estimation

    Full text link
    Motion estimation is one of the major problems in developing video coding applications. Among all motion estimation approaches, Block-matching (BM) algorithms are the most popular methods due to their effectiveness and simplicity for both software and hardware implementations. A BM approach assumes that the movement of pixels within a defined region of the current frame can be modeled as a translation of pixels contained in the previous frame. In this procedure, the motion vector is obtained by minimizing a certain matching metric that is produced for the current frame over a determined search window from the previous frame. Unfortunately, the evaluation of such matching measurement is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be viewed as an optimization problem whose goal is to find the best-matching block within a search space. The simplest available BM method is the Full Search Algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of all the elements of the search space. Recently, several fast BM algorithms have been proposed to reduce the search positions by calculating only a fixed subset of motion vectors despite lowering its accuracy. On the other hand, the Harmony Search (HS) algorithm is a population-based optimization method that is inspired by the music improvisation process in which a musician searches for harmony and continues to polish the pitches to obtain a better harmony. In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. The approach uses motion vectors belonging to the search window as potential solutions. A fitness function evaluates the matching quality of each motion vector candidate.Comment: 25 Pages. arXiv admin note: substantial text overlap with arXiv:1405.472

    A survey on video compression fast block matching algorithms

    Get PDF
    Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television, CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensation predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50–80% of video encoding complexity. This technique has been adopted by all of the existing International Video Coding Standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks and compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called Full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm are developed to reduce the computation complexity. This paper focuses on a survey for two video compression techniques: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the Full Search is decreased while the resolution of the predicted frames is the same as for the Full Search. The second is called lossy block matching algorithm process, which reduces the computational complexity effectively but the search result's quality is not the same as for the Full Search
    corecore