1,536 research outputs found

    An Efficient Approach for Preprocessing Data from aLarge-Scale Chemical Sensor Array

    Get PDF
    In this paper, an artificial olfactory system (Electronic Nose) that mimics the biological olfactory system is introduced. The device consists of a Large-Scale Chemical Sensor Array (16, 384 sensors, made of 24 different kinds of conducting polymer materials) that supplies data to software modules, which perform advanced data processing. In particular, the paper concentrates on the software components consisting, at first, of a crucial step that normalizes the heterogeneous sensor data and reduces their inherent noise. Cleaned data are then supplied as input to a data reduction procedure that extracts the most informative and discriminant directions in order to get an efficient representation in a lower dimensional space where it is possible to more easily find a robust mapping between the observed outputs and the characteristics of the odors in input to the device. Experimental qualitative proofs of the validity of the procedure are given by analyzing data acquired for two different pure analytes and their binary mixtures. Moreover, a classification task is performed in order to explore the possibility of automatically recognizing pure compounds and to predict binary mixture concentrations

    Connections Between Numerical Algorithms for PDEs and Neural Networks

    Get PDF
    We investigate numerous structural connections between numerical algorithms for partial differential equations (PDEs) and neural architectures. Our goal is to transfer the rich set of mathematical foundations from the world of PDEs to neural networks. Besides structural insights, we provide concrete examples and experimental evaluations of the resulting architectures. Using the example of generalised nonlinear diffusion in 1D, we consider explicit schemes, acceleration strategies thereof, implicit schemes, and multigrid approaches. We connect these concepts to residual networks, recurrent neural networks, and U-net architectures. Our findings inspire a symmetric residual network design with provable stability guarantees and justify the effectiveness of skip connections in neural networks from a numerical perspective. Moreover, we present U-net architectures that implement multigrid techniques for learning efficient solutions of partial differential equation models, and motivate uncommon design choices such as trainable nonmonotone activation functions. Experimental evaluations show that the proposed architectures save half of the trainable parameters and can thus outperform standard ones with the same model complexity. Our considerations serve as a basis for explaining the success of popular neural architectures and provide a blueprint for developing new mathematically well-founded neural building blocks

    Connecting mathematical models for image processing and neural networks

    Get PDF
    This thesis deals with the connections between mathematical models for image processing and deep learning. While data-driven deep learning models such as neural networks are flexible and well performing, they are often used as a black box. This makes it hard to provide theoretical model guarantees and scientific insights. On the other hand, more traditional, model-driven approaches such as diffusion, wavelet shrinkage, and variational models offer a rich set of mathematical foundations. Our goal is to transfer these foundations to neural networks. To this end, we pursue three strategies. First, we design trainable variants of traditional models and reduce their parameter set after training to obtain transparent and adaptive models. Moreover, we investigate the architectural design of numerical solvers for partial differential equations and translate them into building blocks of popular neural network architectures. This yields criteria for stable networks and inspires novel design concepts. Lastly, we present novel hybrid models for inpainting that rely on our theoretical findings. These strategies provide three ways for combining the best of the two worlds of model- and data-driven approaches. Our work contributes to the overarching goal of closing the gap between these worlds that still exists in performance and understanding.Gegenstand dieser Arbeit sind die Zusammenhänge zwischen mathematischen Modellen zur Bildverarbeitung und Deep Learning. Während datengetriebene Modelle des Deep Learning wie z.B. neuronale Netze flexibel sind und gute Ergebnisse liefern, werden sie oft als Black Box eingesetzt. Das macht es schwierig, theoretische Modellgarantien zu liefern und wissenschaftliche Erkenntnisse zu gewinnen. Im Gegensatz dazu bieten traditionellere, modellgetriebene Ansätze wie Diffusion, Wavelet Shrinkage und Variationsansätze eine Fülle von mathematischen Grundlagen. Unser Ziel ist es, diese auf neuronale Netze zu übertragen. Zu diesem Zweck verfolgen wir drei Strategien. Zunächst entwerfen wir trainierbare Varianten von traditionellen Modellen und reduzieren ihren Parametersatz, um transparente und adaptive Modelle zu erhalten. Außerdem untersuchen wir die Architekturen von numerischen Lösern für partielle Differentialgleichungen und übersetzen sie in Bausteine von populären neuronalen Netzwerken. Daraus ergeben sich Kriterien für stabile Netzwerke und neue Designkonzepte. Schließlich präsentieren wir neuartige hybride Modelle für Inpainting, die auf unseren theoretischen Erkenntnissen beruhen. Diese Strategien bieten drei Möglichkeiten, das Beste aus den beiden Welten der modell- und datengetriebenen Ansätzen zu vereinen. Diese Arbeit liefert einen Beitrag zum übergeordneten Ziel, die Lücke zwischen den zwei Welten zu schließen, die noch in Bezug auf Leistung und Modellverständnis besteht.ERC Advanced Grant INCOVI

    Soft clustering analysis of galaxy morphologies: A worked example with SDSS

    Full text link
    Context: The huge and still rapidly growing amount of galaxies in modern sky surveys raises the need of an automated and objective classification method. Unsupervised learning algorithms are of particular interest, since they discover classes automatically. Aims: We briefly discuss the pitfalls of oversimplified classification methods and outline an alternative approach called "clustering analysis". Methods: We categorise different classification methods according to their capabilities. Based on this categorisation, we present a probabilistic classification algorithm that automatically detects the optimal classes preferred by the data. We explore the reliability of this algorithm in systematic tests. Using a small sample of bright galaxies from the SDSS, we demonstrate the performance of this algorithm in practice. We are able to disentangle the problems of classification and parametrisation of galaxy morphologies in this case. Results: We give physical arguments that a probabilistic classification scheme is necessary. The algorithm we present produces reasonable morphological classes and object-to-class assignments without any prior assumptions. Conclusions: There are sophisticated automated classification algorithms that meet all necessary requirements, but a lot of work is still needed on the interpretation of the results.Comment: 18 pages, 19 figures, 2 tables, submitted to A

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Learning Robust and Discriminative Manifold Representations for Pattern Recognition

    Get PDF
    Face and object recognition find applications in domains such as biometrics, surveillance and human computer interaction. An important component in any recognition pipeline is to learn pertinent image representations that will help the system to discriminate one image class from another. These representations enable the system to learn a discriminative function that can classify a wide range of images. In practical situations, the images acquired are often corrupted with occlusions and noise. Thus, a robust and discriminative learning is necessary for good classification performance. This thesis explores two scenarios where robust and discriminative manifold representations help recognize face and object images. On one hand learning robust manifold projections enables the system to adapt to images across different domains including cases with noise and occlusions. And on the other hand learning discriminative manifold representations aid in image set comparison. The first contribution of this thesis is a robust approach to visual domain adaptation by learning a subspace with L1 principal component analysis (PCA) and L1 Grassmannian with applications to object and face recognition. Mapping data from different domains on a low dimensional subspace through PCA is a common step in subspace based unsupervised domain adaptation. Subspaces extracted by PCA are prone to be affected by outliers that lead to noisy projections. A robust subspace learning through L1-PCA helps in improving performance. The proposed approach was tested on the office, Caltech - 256, Yale-A and AT&T datasets. Results indicate the improvement of classification accuracy for face and object recognition task. The second contribution of this thesis is a biologically motivated manifold learning framework for image set classification by independent component analysis (ICA) for Grassmann manifolds. It has been discovered that the simple cells in the visual cortex learn spatially localized image representations. Similar representations can be learnt using ICA. Motivated by the manifold hypothesis, a Grassmann manifold is learnt using the independent components which enables compact representation through linear subspaces. The efficacy of the proposed approach is demonstrated for image set classification on face and object recognition datasets such as AT&T, extended Yale, labelled faces in the wild and ETH - 80
    corecore